
Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.49 (63), 2004, ISSN 1224-600X

1

Threshold Puzzles: The Evolution of DOS-resistant Authentication

Valer BOCAN

Department of Computer Science and Engineering, Politehnica University of Timişoara, Bd. V. Pârvan, 300223 Timişoara, Romania
E-mail: vbocan@dataman.ro, WWW: http://www.dataman.ro

Abstract – Client puzzles have been proposed to add DOS
resistance to authentication protocols. Due to the parallel
design of puzzles, the technology is vulnerable to the so-
called strong attacks. This paper advocates the need for
time management of solved puzzle instances and
introduces the “threshold puzzle” and “strong attack”
concepts.

Keywords: security, denial of service, attack,
authentication, client puzzles, threshold puzzles

I. INTRODUCTION

Denial of service attacks are a major problem in today’s
interconnected world. There are numerous examples of
websites which have been attacked and brought to their
knees for hours: Yahoo!, Amazon, eBay, they have all lost
hundreds of thousands of transactions during the down time
which translates in losses of millions of dollars.
Attackers are known to exploit the end-user ignorance and
break into hundreds of thousands of system to install their
tool of choice. These “zombie” systems are capable of
receiving commands from a central operations center via
encrypted channels. The main reason for the very existence
of such “zombies” is the generation of bogus traffic
targeted to a specific website. In order to make tracking
more difficult, the source IP address may be spoofed but in
the same time may be chosen from the same subnet in
order to avoid egress filtering [3].

Generating a massive traffic to a single destination is likely
to alarm any system administrator that does a minimal
monitoring. For ecommerce sites, the attack may be more
subtle since the website may be available while the attack
concentrates on the secure payment server so that nobody
is able to make a successful purchase. The SSL and TLS
protocols allow expensive operations (RSA) to be
performed at the request of unauthenticated clients. If a
large site can process around 4000 RSA operations per
second and a partial SSL/TLS handshake consumes on
average 200 bytes, then all it takes is approximately 800KB
/ sec. to paralyze the ecommerce site [3].

In order to add DOS-resistance to any authentication
protocol, the design principle should be that the client
always commits its resources before the server does and at
any point during protocol execution the cost for the client

should be greater than for the server. The client cost may
be increased artificially by asking it to do some work
whose difficulty may be effortlessly chosen by the server.
At the same time, the verification for correctness should
not place a burden on the server since that would defeat the
very purpose of the technique.

II. RELATED WORK

In his 1978 paper [4], Merkle was the first to come up with
the idea of cryptographic puzzles but he only applied
puzzles for key agreement rather than authentication. Client
puzzles have been applied to TCP SYN flooding by Juels
and Brainard [2] who mention that SSL has the same
problem and give a rigorous proof of the security
characteristics. Aura, Nikander and Leiwo apply client
puzzles to authentication protocols in general [1]. Client
puzzles were also proposed as a regulating measure against
junk mail by Dwork and Naor [5] and the related problem
of time-locked cryptography was discussed by Rivest,
Shamir and Wagner [6]. However the inherent sequential
nature of time-locked cryptography also makes it very
difficult for the server to verify the solution.

III. CLIENT PUZZLES

Before committing resources the server should ask the
client to solve a problem, as seen in figure 1. Regardless of
the specific implementation, a good puzzle should have the
following properties (as described in [1]), the last of which
being new:

Fig. 1. Principle of the client puzzle protocol

2

1. Creating a puzzle and verifying the solution is
inexpensive for the server.

2. The cost of solving the puzzle is easy to adjust
from zero to impossible.

3. The puzzle can be solved on most types of client
hardware (although it may take longer with slow
hardware).

4. It is not possible to precompute solutions to the
puzzles.

5. While the client is solving the puzzle, the server
does not need to store the solution or other client-
specific data.

6. The same puzzle may be given to several clients.
Knowing the solution of one or more clients does
not help a new client in solving the puzzle.

7. A client can reuse a puzzle by creating several
instances of it.

8. The puzzle should not be solved in less than a
predetermined amount of time.

The natural choice for a client puzzle is the brute force
reversal of hash functions such as MD5 or SHA1 since they
have a simple structure and can run on a variety of
hardware platforms. Juels and Brainard [2] have also
proposed the use of a reduced round cipher instead of the
hash function but that is beyond the scope of this paper.

A. Creating a New Puzzle

Periodically (say once every few minutes), the server
generates a random value NS. In order to prevent attacks by
guessing the nonce, the value should have 64 bits of
entropy and should not be a predictable value such as a
time stamp. This entropy should be enough to prevent an
attacker to precompute «nonce-result» pairs and the
occasional matches caused by birthday attacks would not
do too much harm here. The server has to decide the
difficulty level k of the puzzle, based on the current
conditions. To sum up, the puzzle that is broadcast to
clients is the pair:

« NS, k »
• NS – server nonce (usually 64-bit, unpredictable

quantity)
• k – puzzle difficulty level

B. Solving the Puzzle

To solve the puzzle, the client generates a nonce NC. The
purpose of this nonce is twofold. First, if the client reuses a
server nonce NS, it can create a new instance by generating
a new NC. Second, without the client nonce an attacker
could compute the puzzle and send the result back to the
server before the client does. 24 bits of entropy should be
enough to prevent the attacker from exhausting the values
of NC given that NS changes frequently.

The client must repeatedly apply a hash function to a
quantity and the puzzle is considered solved when the first
k bits of Y are equal to 0.

h(C, NS, NC, X) = Y

• h – cryptographic hash function, such as MD5 or
SHA

• C – client identity
• NS – server generated nonce
• NC – client generated nonce
• X – solution of the puzzle

Since the server changes NS periodically, while it considers
NS recent, it must keep a list of correctly solved instances
in the form of NS-NC pairs so that previous solutions cannot
be reused.

Since there are no known shortcuts to find out X, the only
possibility is to search for it by brute-force. The difficulty
level k (i.e. the number of zeros at the beginning of Y)
dictates how long the puzzle will take to solve. If k equals
0 then no work is required, whereas if k equals 128 (for
MD5) or 192 (for SHA), the client must reverse an entire
one-way function which is computationally impossible.

C. Puzzle Difficulty

The parameter k represents the puzzle difficulty. The task
of establishing it at the time of puzzle generation is rather
tricky, since there is no obvious metric that one can use in a
real-world implementation. According to [3], the best
approach would be the number of already committed RSA
operations rather than the current processor load or the
number of incoming requests.Unfortunately, the puzzle
difficulty follows an exponential curve and thus it is
limited in practical purposes. To solve a puzzle of difficulty
k, the client needs to perform on average 2k – 1 operations.
In [1], Aura, Nikkander and Leiwo state that reasonable
values for the difficulty level (k) are between 0 and 64. By
experimenting, I have found out that the reasonable range
is much narrower and for small difficulty levels, the time
needed to solve the puzzle for level k may be greater than
the time for level k+1.
As of today (beginning of 2004), the average web client is
capable of approximately 4500 – 5000 MIPS which leads
to 0.02 milliseconds per cryptographic operation. Thus, the
puzzle difficulty curve looks as in figure 2. For difficulty
levels above 20, the time needed to solve the puzzle is
prohibitive, hence the limited practical applicability. A
cryptographic operation is considered an attempt (not
necessarily successful) to solve the puzzle and includes the
time needed to build up the quantity to apply hash to and
the actual computation of either an MD5 or SHA function.

In order to obtain a more accurate scale for the puzzle
difficulty parameter, Jules and Brainard [2] proposed that
puzzles be split into several smaller puzzles of equal
difficulty that should be solved separately and the general
result be the combined individual result. Aura, Nikkander
and Leiwo [1] stated that the same granularity can be
achieved by combining sub-puzzles of varying difficulty, at
a slightly lower cost for the server, but that is yet to be
confirmed by experiment.

3

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Puzzle difficulty (k)

Ti
m

e
to

so
lv

e
pu

zz
le

(m
s)

Fig. 2. Solving time for different puzzle difficulties

IV. THRESHOLD PUZZLES

Client puzzles have proved effective both in theory and in
practice. They are secure and perform well in most
scenarios. Regardless of the particular client being
serviced, the puzzle difficulty is chosen based on a metric
that refers strictly to the server resource commitment. Since
puzzles may be broadcast and are generated at precise
intervals, this “one size fits all” solution is not perfect since
different clients have various computing powers. I have
noted that client puzzles are vulnerable to a particular form
of attack (called henceforth “strong attack”) due to the
highly parallel nature of the puzzle. A strong attack is
defined as a denial of service attack mounted by an attacker
with access to massive computing power. The attacker is
able to solve puzzles in a time much shorter than a
legitimate client. The schematic of a strong attack is shown
in figure 3.

Suppose that a server authenticates a number of legitimate
clients and the initial puzzle difficulty is set to zero. When
a strong attack is in progress, the server has the tendency to
gradually increase the puzzle difficulty up to high values in
order to cope with the important amount of work required
to service the attacker’s requests. While puzzle difficulty

may be increased up to impossible, this also means a DOS
attack in its own right targeted against legitimate clients
who may never solve a puzzle such difficult.

Although not very likely, a strong attack is possible. If an
attacker had access to other N computers (with N being
sufficiently large so we speak about massive computing
power), then time needed to solve a puzzle with difficulty k
would be divided by N. The SETI program [7] and the
effort to break the RSA algorithms [8] are real world
examples of how hundreds of thousands of computers are
put to work together for a common purpose. The cumulated
power of the distributed.net network exceeded the
equivalent of 160000 PII 266MHz computers, which
clearly shows that strong attacks are possible under certain
circumstances.

I propose two changes in the existing client puzzle
specification:

• Limiting the difficulty level so that the puzzle
remains within usability margins.

• Adding a minimum response time to the puzzle
definition.

A. Limiting the Puzzle Difficulty Level

Although the current design of the client puzzle as it is
described in [1] specifies a difficulty range from 0 (no
work required) to 128 or 192 (impossible, depending on the
hash function used), a real-world implementation of an
authentication protocol is likely to choose a reasonable
range for the puzzle difficulty, say between 0 and 25, due
to the exponential scale which gives a narrow usability
margin. Having difficulty levels close to impossible may
open a new avenue of attack against the legitimate clients
themselves and this is an issue even more serious than
attacking just the server.

Server

Strong Attack

Legitimate Client

With the aid of several zombies spread across the Internet,
an attacker may have access to massive computing power

which renders client puzzle technology useless.

Attacker

Fig. 3. Schematic of a strong attack on an authentication protocol protected by client puzzles

4

B. Establishing the Minimum Response Time

The basic idea is to add the timestamp at which the server
nonce was generated to the list «NS, NC, X, k» which is
kept by the server in order to prevent reusing puzzle
instances. When the server receives a solution to a puzzle,
it can calculate the time it took the client to solve the
puzzle and that should not be less than an estimated
duration. If it is, then the server is under a strong attack and
should immediately cease communication with the client in
question. On average it takes 2k – 1 operations to solve a
puzzle of difficulty k, hence the formula to estimate the
time needed to solve a puzzle of difficulty k is:

Testimated = (2k – 1) * Toperation

• Testimated – the estimated time for solving the
puzzle

• k – puzzle difficulty level
• Toperation – minimum time for performing a

cryptographic operation (currently in the range
0.01 – 0.02 milliseconds, must be determined
experimentally or the Moore law should be
applied at the time actual implementation is
done)

The estimated time represents the acceptance threshold for
the client puzzle. A client puzzle with the above mentioned
changes is called a threshold puzzle.

V. DOS-RESISTANT AUTHENTICATION USING
THRESHOLD PUZZLES

Client puzzles have been used to add DOS-resistance to
authentication protocols in [1]. Using threshold puzzles
does not incur important changes and the scenario is
similar.

The protocol normally begins with a client requesting a
connection, in the form of a ClientHello message. The
server generates the puzzle (the NS and k parameters) and
sends the ServerHello message back to the client.
Optionally, the message may be time stamped and signed
in order to prevent attackers from forging puzzles
generated by the server. If the ClientHello message is
missing from the design of the authentication protocol, then
the server may broadcast ServerHello messages with the
same nonce. The server nonce must change periodically.

Any client willing to talk to the server has to generate a
random nonce NC and must correctly solve the puzzle and
supply the C, NC and X parameters for verification. In case

it wants to initiate several connections to the same server,
the client may reuse the puzzle by generating a new NC.

Upon receipt of a solved puzzle, the server checks whether
the client C has already submitted a solution with the same
NS and NC. This check ensures that solutions are not
replayed. At this point the protocol on the server side is
different than the one described in [1], since the server
performs an additional step. The server checks whether the
puzzle was solved in a time shorter than the estimate. If
that is the case, then the server is under a strong attack and
drops the connection to the client in question, without
committing any resources. If the time exceeds the estimate,
then the server proceeds with calculating the hash, verifies
the signature and continues the normal protocol execution.
See figure 4 for the schematic of an authentication protocol
that uses threshold puzzles.

VI. EXPERIMENTING WITH THRESHOLD PUZZLES

In order to prove the theory behind threshold puzzles, I
performed a series of experiments. The most popular and
the most widely deployed authentication protocol is SSL
and that was a natural choice for testing the theory. An
excellent C# open-source implementation of the SSL/TLS
suite of protocols is the Mentalis Security Library [9]. The
library is modified so that it has support for creating,
solving and verifying puzzles. Message signing was
omitted for brevity.

The puzzle challenge contains the time at which it was
generated (so that the client knows how old the puzzle is),
the requested difficulty level and the server nonce.

[Serializable]
public class PuzzleChallenge
{

public DateTime TimeStamp;
public int Difficulty;
public ulong ServerNonce;

public PuzzleChallenge(int Difficulty)
{
this.Difficulty = Difficulty;
TimeStamp = DateTime.Now;

Random rand = new Random();
ulong a = (ulong)rand.Next();
ulong b = (ulong)rand.Next();
ServerNonce = a + 65536 * b;
}

}

The puzzle solution contains the client ID, the original
server nonce, a randomly generated client nonce and the
solution of the puzzle. The C# class looks as follows:

5

Client Server

Client Hello The server periodically generates
the nonce NS, decides difficulty

level k and signs the puzzle.
SS(TS, k, NS)

The client verifies the signature and
that the timestamp TS is recent,

generates NC and solves the puzzle
by brute force and finds X. The

signed response is:
SC(S, C, NS, NC, X) Puzzle Reply

The server verifies that the puzzle
response hasn’t arrived earlier than

estimated, NS is recent, C, NS and NC not
used before, and puzzle solution is

correct. The server may now commit
resources and verifies the signature of

the message. At this point the server has
authenticated the client and may sign the

following message for mutual
authentication:
SS(S, C, NC)The client verifies the signature.

At this point, the client has
authenticated the server.

ServerH
ello

Puzzle Request

Fig. 4. Schematic of an authentication protocol protected by threshold puzzles

[Serializable]
public class PuzzleSolution
{

public string ClientID;
public ulong ServerNonce;
public uint ClientNonce;
public ulong Solution;
public PuzzleSolution(string ClientID)
{
this.ClientID = ClientID;
ClientNonce = (uint)(new

Random()).Next();
}

}

Both classes are marked as serializable to allow integration
in the protocol binary stream. The server nonce is a 64-bit
quantity and the client nonce is a 32-bit quantity.

The hash function (MD5 in this particular case) is
calculated by transforming the parameters C, NS, NC and X
into a stream of bytes and concatenated into a larger buffer.
The MD5 function calculates the hash of the buffer, as
follows:

ulong ComputeHash(string ClientID, uint
ClientNonce, ulong ServerNonce, ulong X)
{
// Build MD5 cryptographic provider
MD5CryptoServiceProvider md5 = new
MD5CryptoServiceProvider();
byte []buff1 =
BitConverter.GetBytes(ClientID.GetHashCode());
byte []buff2 =
BitConverter.GetBytes(ClientNonce);
byte []buff3 =
BitConverter.GetBytes(ServerNonce);

byte []buff4 = BitConverter.GetBytes(X);
int pos = 0;
byte []buffer = new byte[buff1.Length +
buff2.Length + buff3.Length + buff4.Length];
Array.Copy(buff1, 0, buffer, pos,
buff1.Length);
pos += buff1.Length;
Array.Copy(buff2, 0, buffer, pos,
buff2.Length);
pos += buff2.Length;
Array.Copy(buff3, 0, buffer, pos,
buff3.Length);
pos += buff3.Length;
Array.Copy(buff4, 0, buffer, pos,
buff4.Length);
pos += buff4.Length;
// Compute hash
ulong longhash =
BitConverter.ToUInt64(md5.ComputeHash(buffer),
0);
return longhash;
}

In order to find the puzzle solution (X), brute-force must be
used and the simplest approach is to cycle through all
possible values of a 64-bit quantity. When the puzzle
solution is correct (the first k bits are all 0s), the cycle is
stopped.

PuzzleSolution Solve(PuzzleChallenge Puzzle)
{
PuzzleSolution ps = new
PuzzleSolution("ClientID");
// Copy over the server nonce
ps.ServerNonce = Puzzle.ServerNonce;
// Verify whether the timestamp is newer than 1
minute
if(Puzzle.TimeStamp.AddSeconds(60) <

6

DateTime.Now) throw new Exception("Puzzle is
older than the configured amount of time.");

for(ulong x = System.UInt64.MinValue; x <
System.UInt64.MaxValue; x++)
{
ulong longhash = ComputeHash(ps.ClientID,
ps.ClientNonce, Puzzle.ServerNonce, x);
if(BitCounter(longhash) == Puzzle.Difficulty)
{

ps.Solution = x;
break;

}
}
return ps;
}

The BitCounter function has been omitted for brevity. Its
purpose is to count the number of 0 consecutive most-
significant bits from the supplied quantity.

The SSL library was modified so to include two additional
messages (PuzzleChallenge and PuzzleReply) before the
ServerHelloDone message which ends the SSL handshake
protocol. Based on the modified SSL library, the following
modules have been created:

• Legitimate Client – a normal client which
follows the normal SSL execution path as it is
supposed to.

• Malicious Client – a client who has access to
massive computing power (this is simulated by
not solving the puzzle at all and the server not
checking for solution correctness) and may yield
several connection requests in a short time.

• Normal Server – a SSL server protected by the
client puzzle technology.

• Threshold Server – a SSL server protected by the
threshold puzzle technology

Using the mentioned modules I performed several tests.
Each tests involved two Pentium IV - class computers
connected through a 100 Mbps Ethernet link, the “client”
computer running Windows 2000 Professional and the
“server” running Windows 2003 Server Standard,
respectively. For each individual test, see the average time
for a request issued by a legitimate client trying to connect
to the server.

A. Legitimate Clients Connecting to a Normal Server

Under normal circumstances, the clients experienced
minimal delays, due solely to the SSL handshake protocol
and transfer time throughout the network. The puzzle
mechanism was not used since the server was perfectly
capable of servicing all requests in time. The average
request time is 4545 ms.

B. Malicious Client Attacking a Regular Server

When at least one of the clients is malicious, the server
load increases dramatically and so does the puzzle
difficulty. The legitimate clients are forced to solve
difficult puzzles and at a certain point, the delay
experienced by them is prohibitively long, causing a DOS
attack targeted against legitimate clients themselves. The
average request time is 10339 ms.

C. Malicious Client Attacking a Threshold Server

If the server uses the threshold puzzle technology, the
malicious clients are spotted immediately (since they tend
to solve puzzles a lot sooner than they normally should)
and the server does not commit resources for them and
therefore the overall puzzle difficulty is not increased
significantly. The average request time is 4553 ms.

VII. CONCLUSIONS

I have shown that client puzzles are vulnerable to attacks
mounted by malicious clients that have access to massive
computational power and that the lack of upper bound for
the puzzle difficulty parameter may result in denial of
service attacks against legitimate users themselves rather
than only the server. As a corrective measure, I introduced
the concept of threshold puzzle which has the benefit of
keeping track of the client solving times and protects both
the server and its legitimate clients from DOS-attacks.

REFERENCES

[1] Tuomas Aura, Pekka Nikander, Jussipekka Leiwo – “DOS-resistant

Authentication with Client Puzzles”, 2001,
http://research.microsoft.com/users/tuomaura/Publications/aura-
nikander-leiwo-protocols00.pdf

[2] Ari Juels, John Brainard – “Client Puzzles: A Cryptographic
Countermeasure Against Connection Depletion Attacks”,
Proceedings of NDSS, 1999

[3] Drew Dean, Adam Stubblefield – “Using Client Puzzles to Protect
TLS”, http://www.csl.sri.com/users/ddean/papers/usenix01b.pdf

[4] R. C. Merkle – “Secure Communications Over Insecure Channels”,
Communications of the ACM, April 1978

[5] Cynthia Dwork and Moni Naor – “Pricing via Processing or
Combating Junk Mail”, Proceedings of CRYPTO ’92, Springer
Verlag 1992.

[6] Ronald R. Rivest, Adi Shamir, David A. Wagner – “Time-lock
Puzzles and Timed-release Cryptography”, 1996, http://lcs.mit.edu/
~rivest/RivestShamirWagner-timelock.pdf

[7] SETI @home Program, http://setiathome.ssl.berkeley.edu/
[8] The Distributed.net Organization, http://www.distributed.net
[9] Mentalis C# Security Library, http://www.mentalis.org

