
Denial of Service Resilience of

Authentication Systems
Valer BOCAN, Mihai FAGADAR-COSMA

Alcatel-Lucent Romania

ABSTRACT
Cryptographic authentication systems are currently the de facto standard for securing clients access to

network services. Although they offer enhanced security for the parties involved in the

communication process, they still have a vulnerable point represented by their susceptibility to denial

of service (DoS) attacks. The present chapter addresses two important aspects related to the security

of authentication systems and their resistance against strong DoS attacks, represented by attack

detection and attack prevention. In this respect we present a detailed analysis of the methods used to

evaluate the attack state of an authentication system as well as of the countermeasures that can be

deployed to prevent or repel a DoS attack.

INTRODUCTION

Denial of service attacks on authentication systems can take two possible forms. On one hand, an

attacker can prevent the network from sending the messages that it should normally transmit to its

clients. On the other hand, it could force the network into sending messages it should not normally

transmit. By far, the most popular DoS attack is server flooding that prevents legitimate clients from

obtaining the services they request from that server.

One cause for the vulnerability to DoS in authentication systems is that the dialog between peers takes

place before even a minimum pre-authentication is performed, which renders the server incapable of

distinguishing legitimate from malicious traffic. Enforcing the authentication of all requests would

represent a DoS attack by itself, since the server would be busy checking all digital signatures, no

matter if these are valid or not. Such a method would be as dangerous as a TCP stack overflow is in

case of TCP SYN attacks.

Another vulnerability is the lack of resource accounting. In this respect Spatscheck and Peterson

(1999) consider that there are 3 key ingredients for protecting against DoS attacks: accounting all

resources allocated to a client, detecting the moment when these resources rise above a predefined

threshold and constraining the allocated resources by reducing them to a minimum level in case an

attack has been detected and recovering the blocked resources.

The third vulnerability resides in the intrinsic design of the communication protocols, as described by

Crosby and Wallach (2003). A new class of low-bandwidth attacks exploits the deficiencies of data

structures employed in various applications. For example, hash tables and binary trees can degenerate

into simple linked lists when input data is selected accordingly. Using the typical bandwidth of a dial-

up modem, the authors have managed to bring a Bro server on the edge of collapsing: 6 minutes after

the attack has begun, the server was ignoring 71% of traffic and was consuming its entire

computational power.

Taking in consideration the global market tendency towards on-line availability, DoS attacks prove to

be more dangerous than initially predicted therefore identifying them as soon as they take place is a

decisive aspect. From the moment the attack has begun until it is detected and countermeasures are

deployed, the targeted servers are blocked and all legitimate requests are ignored, which can result in

significant financial losses. Chained attacks can occur if the communication protocol continues its

dialogue with the attacker even after anomalies have been detected. The basic idea behind the so

called fail-safe or fail-stop protocols is for the message-exchange to be discontinued with any client

that does not follow the normal course of the protocol.

Considering the attack forms and characteristics described above, a resilient authentication system

must fulfill two main requirements. First, the system must be able to detect an incoming attack as

soon as possible in order to be able to respond accordingly and prevent any possible losses. Second,

the system must be able to defend itself against an ongoing attack, either through its intrinsic

characteristics or by deploying a set of countermeasures against the attacker. Given these

requirements, we have structured this chapter into two main parts. In the first part we address the

strategy and the techniques that enable an authentication system to efficiently detect DoS attacks, and

their implementation into a detection engine called SSO-SENSE. In the second part we focus on the

threshold puzzles concept as an a efficient way to protect against DoS attacks and analyze the case

study of the SSL Handshake algorithm from both an implementation and a performance perspective.

BACKGROUND

The Client Puzzles Concept

An efficient measure for preventing DoS attacks during the authentication phase would be to ensure

that the client allocates its resources proportionally with the resources allocated by the server. As a

result, at any time during the execution of the authentication protocol, the computational cost for the

client will be higher than that of the server. This can be achieved by asking the client to solve a puzzle

with a difficulty established by the server. The solution to the client puzzle should be easily accessible

to the server, in order to obtain a low resource usage, while the client should be forced to allocate

computational resources into solving the puzzle according to the complexity requested by the server.

Merkle (1978) was the first to come up with the idea of using cryptographic puzzles, but he applied

the concept only for key exchange and not for the authentication itself. Later, the client puzzles

concept has been successfully applied against TCP SYN attacks by Juels and Brainard (1999), who

also outline the vulnerability of SSL protocols against DoS attacks and provide a rigorous

demonstration of their security characteristics. Aura, Nikander and Leiwo (2000) have applied the

puzzles to authentication protocols in general while Dwork and Naor (1992) have proposed measures

for regulating unsolicited messages within a protocol.

According to Aura, Nikander and Leiwo (2000) and to Harris (2001), the client puzzle must have a set

of well-defined properties, as follows:

 Creating a puzzle and verifying the solution must not require significant resources on the

server side;

 The cost of solving the puzzle should easily be changed from 0 to infinity;

 The puzzle should be solvable on most hardware platforms;

 Pre-calculating the solution to the puzzle must be impossible;

 While the client solves the puzzle, the server must not store the solution or other client-

specific information; the same puzzle can be distributed to several clients, knowing that the

solutions provided by one or more clients do not help in calculating a new solution;

 A client may reuse a puzzle by creating one or more of its instances.

The client puzzle concept is shown in Figure 1.

ServerClient

Puzzle

Solution

1 Create puzzle

(no significant effort)
2

Solve puzzle
(by allocating own resources)

3
Check solution
(decide resources to be

allocated for servicing the client)

Figure 1. The client puzzle concept

Client puzzles can take various forms, the most popular ones being the partial inversion of a hash

function (Juels & Brainard, 1999; Aura, Nikkander & Leiwo, 2000), the discrete logarithm inversion

applied by Waters, Juels, Halderman and Felten (2004), the time-locked puzzles proposed by Rivest,

Shamir and Wagner (1996) and linked puzzles (Groza & Petrica, 2006; Ma, 2006).

Creating and Solving a Puzzle

Periodically (usually once every several minutes) the server generates a random 64 bit value NS,

enough to prevent the client from guessing the puzzle result. The server also attaches a value k to the

puzzle, representing the puzzle complexity. In short, the puzzle which is sent by the server to its

clients can be represented as a <Ns, k> pair.

In order to solve the puzzle, the client generates a random value NC, with a double purpose: first, the

client can generate a new puzzle by reusing the value NS provided by the server to create the NC value

and second, it prevents an attacker from calculating the puzzle and sending it to the server before the

legitimate client. A 24 bit size should be enough for this value, given the fact that it changes very

often.

The client has to apply repeatedly a hash function to a quantity Y, and the puzzle is considered solved

when the 1st k bits of the quantity Y are equal to 0, according to the equation

h(C, NS, NC, X) = Y,

where:

 h represents the hash function (e.g. MD5 or SHA),

 NS is the random value generated by the server,

 NC is the random value generated by the client,

 C represents the client identity and

 X is the solution to be sent to the server.

The server also maintains a list of the recently used <NS, NC> pairs in order to prevent them from

being reused.

Since there is no known way of determining X other than by brute-force, the client will be forced to

use its computational power to reach the solution. The value k controls the puzzle complexity and thus

the time needed for the client to reach the solution. The edge cases are k=0 which means no effort at

all and k=128 for MD5 or 192 for the SHA function means a puzzle nearly impossible to solve.

Shortcomings of the Classical Puzzle Concept

Client puzzles make a good choice for securing authentication protocols, as long as the attack is not

distributed (Schneier, 2000). One shortcoming is the fact that the computational power available to

the client is ignored, since the puzzle difficulty is established using a metric that takes in consideration

only the server engagement. As a result, an attacker which has access to significant computational

power can unleash a so-called strong attack against the server, and can solve puzzles faster than a

legitimate client.

During a strong attack, the server gradually increases the puzzle complexity up to levels which are

very difficult for normal clients, which represents a DoS attack in itself. If the attacker has access to

multiple computers and can solve the puzzle using parallel computing, it can reduce the solving time

considerably. There are many real-life examples of such applications in literature, the SETI @home

Program (2010) and the effort to break the RSA algorithm supported by the Distributed.net

Organization (2010) being only two of them.

These considerations emphasize the necessity of adopting a puzzle mechanism which enables the

server to assess the computational power of its clients and adapt the puzzle complexity accordingly,

also taking in consideration the overall security status of the system. This requirement is even more

complex given the variety of computational devices that can connect to a network service and the fact

that the service must respond within an acceptable timeframe to all its legitimate clients, while at the

same time keeping any possible attackers at bay.

DOS ATTACK DETECTION IN AUTHENTICATION SYSTEMS

Measurable Characteristics

The first step in being able to effectively protect against a DoS attack is to detect its presence. Thus, it

is mandatory to determine if the server load is caused by a temporary and transitory aspect, by a peak

in the network traffic, or by an attack. Deploying countermeasures induces a penalty experienced by

clients as a drop in performance, and this situation can become unpleasant as it appears more

frequently.

Due to the complex nature of authentication systems and to the wide range of possible configurations

into which they may be deployed, attack detection is an important challenge especially because of the

lack of standard risk assessment metrics. In this section we propose three measurable characteristics

that can be used as metrics in evaluating the system status and determining the threat level, and apply

them as a case study to SSO systems based on the Liberty protocol suite (Liberty Alliance Project,

2010a, 2010b).

Protocol Discipline

The first aspect in this category is the order of protocol execution. The exchange of messages between

server and clients must follow a certain order and any disturbance in this order can indicate a possible

attack on the system. Given the example of the Liberty protocol suite, a Single Logout request should

not be received by a service or identity provider if the Single Sign-On and Federation request has been

previously received (Bocan & Fagadar, 2005b), as shown in Figure 2.

Identity

provider

User

Service provider

Compromised

service provider

Login

Logout

<AuthRequest>

<AuthResponse>

<LogoutRequest>

<LogoutResponse>

<LogoutRequest>

1

2

4

5

Single Logout

Single Logout

[Possible attack]

Single Sign-On

and Federation

3

Figure 2. Detecting a possible DoS attack against a SSO authentication system

by monitoring the protocol execution order

The request content is another characteristic to be considered. For each protocol, the request has a set

of specific attributes which specify how the request should be processed by the receiving entity. A

large variation of these attributes coming from a client may indicate a possible attack. For example,

the AuthRequest message of the Single Sign-On and Federation protocol has an attribute which

requests the identity provider to emit a temporary and anonymous identifier on behalf of the client,

when data is exchanged among service providers. Too many requests of this kind received from the

same client can indicate a DoS attack against the identity provider.

Network Health

Network health can be assessed by measuring traffic parameters on the server reception side and can

be used to identify several aspects, such as:

 network operation anomalies represented by an abrupt increase in the measured values over a

given time span;

 flash crowd anomalies due to the synergistic behavior of a group of users (e.g. when a new

software product is available for download); this kind of anomaly can be detected in well-

known points in the network such as download locations or mirror servers;

 abuse anomalies generated by ongoing DoS attacks or port scanning activities.

A software sensor can be placed in the system in order to monitor the anomalies and provide the

relevant information - in raw or aggregated form - to the attack detection engine. According to several

studies (Siaterlis & Maglaris, 2004; Kim, Lau, Chuah & Chao, 2004), reception parameters such as

the time between two consecutive requests, request size, number of requests per second received from

the same client can be used successfully to detect an ongoing DoS attack, but they must be

incorporated into a more complex system for evaluating the health status of the authentication system.

System Health

System health is a crucial aspect which directly impacts the quality of service (QoS). If the system is

functioning at nominal levels it can provide the QoS established by design. Altering these levels,

either due to software or to hardware conditions, will lead to an immediate change in the QoS which

will have as consequences delays in providing the response to the clients, intermittent responses or

even a lack of response from the server.

System health can be characterized by several parameters, including processor load factor, available

memory, frequency of I/O operations, resource reserve for virtual machines and the current state of

system services, drivers or daemon processes.

Obtaining and Correlating the Threat Assessment Metrics

The information retrieved from the software sensors which measure the three main system

characteristics presented above must be aggregated in order to reach a decision regarding the current

threat level of the server.

The sensors which monitor the protocol discipline must be implemented directly into the SSO

protocol, so that they have unrestricted access to the message exchange between peers. The sensors

responsible of monitoring the network and system health can use the performance indicators built into

the operating systems, such as Simple Network Management Protocol (SNMP), Management

Information Base (MIB) indicators or Windows Management Instrumentation (WMI) specific to

Microsoft Windows operating systems.

The threat level, at its simplest form, can be modeled as a real numerical value ranging between 0 and

1. A value of 0 indicates with the highest degree of certitude that the system is working properly and

no attack is in progress, while a value of 1 represents a clear indication that the system is being

affected by an ongoing attack which could lead to service failure. Any value in between can be

considered as a degree of certitude associated to the detection of an ongoing attack.

As shown in one of our papers (Bocan & Fagadar, 2005b), Bayesian inference can be a good

correlation mechanism for the information provided by the sensors, which generates as a direct output

the probability that an attack has been identified, equal to the threat level.

CASE STUDY: THE SSO-SENSE RISK ASSESSMENT MODULE

System Overview

The SSO-SENSE is a specialized software module which relies on Bayesian inference theory in order

to monitor network traffic and detect DoS attacks in Single Sign-On (SSO) environments. SSO-

SENSE aims at providing better security for SSO systems, which are particularly vulnerable to DoS

attacks since the protocols require every message to be signed.

SSO system state
Sensor categories

Protocol discipline

Network health

System health

Bayesian inference
algorithm

Estimated threat level

D
ata

Result

Normal Alert Attack

T1 (alert threshold) T2 (attack threshold)

0 0.2 0.7

St
at

e

1

Figure 3. Block diagram of the SSO-SENSE module

As shown in Figure 3, SSO-SENSE gathers its input from a set of software sensors grouped across

the three main categories mentioned earlier (protocol discipline, network health and system health)

and applies Bayesian inference in order to estimate the threat level T of the system. Depending on this

level, the system can be in one of the three states:

 normal, in which the system works within nominal parameters without being influenced by an

attack;

 alerted, which indicates that the SSO system may be targeted by an attack and

countermeasures like puzzle technology should be employed in order to reduce and control

the rate of requests coming from the possible attacker;

 attacked, indicating a clearly identified DoS attack is in progress in which the server should

forcibly close its connection with the attacker in order to save its resources for other

legitimate clients.

In order to identify the current system state, SSO-SENSE compares the threat level with two

thresholds, the alert threshold T1 and the attack threshold T2, with 0 < T1 < T2 < 1, chosen in such a

way as to efficiently delimit two adjacent states.

Evaluating the Threat Level using Bayesian Inference

When applying the Bayesian inference algorithm, SSO-SENSE considers a set of three mutually

exclusive hypotheses H1, H2 and H3, each associated with one of the system states. Initially, when

system starts, a safe state is considered, for example P(H1) = 0.9 for the normal state, P(H2) = 0.09 for

the alert state and P(H3) = 0.01 for the attack state, where P(Hi) represents the probability of

hypothesis Hi being true.

When an event E is signaled by a software sensor which detects a cross-threshold condition within the

measurable characteristics of the authentication system, that event will be used as evidence to

compute the normalization factor Λ, as follows:

Λ = P(E | H1) ∙ P(H1) + P(E | H2) ∙ P(H2) + P(E | H3) ∙ P(H3)

where, according to the Bayesian inference theory, P(E | Hi) represents the conditional probability of

seeing the evidence E if hypothesis Hi is true.

Next, SSO-SENSE evaluates the posterior probability of each hypothesis in the light of evidence E,

according to Bayes’ theorem:

P(Hi | E) = P(E | Hi) ∙ P(Hi) / Λ.

In the end, the current threat level T is determined, according to the following formula:

T = max[P(H1 | E), P(H2 | E), P(H3 | E)].

The event E which triggers the threat evaluation can be classified into one of the following categories:

 A break into the authentication protocol, such as message inversion, message loss or

messages with incomplete parameters;

 Time between two successive requests coming from the same client;

 An authentication error;

 Sudden increase in CPU load for a short period of time;

 Sudden increase in network traffic, except for flash crowd anomalies;

 Port scanning activities.

Applying Heuristic Attack Detection to the Authentication Process

The various methods used to protect against DoS attacks in authentication systems can be enhanced in

terms of behavior and efficiency by using the additional information provided by an attack detection

engine. While a complex intrusion detection engine applied globally to the whole network may help

in a general manner, attack detection on the authentication vector addresses a specific issue. In this

case, the attacker does not aim to break into the system and steal valuable information but instead his

goal is to compromise the authentication and to prevent legitimate clients from accessing a network

service, an aspect which is not covered by the existing intrusion detection systems.

The SSO-SENSE has been specifically designed for monitoring the authentication process, which

represents the gate into the system. Let us consider the simple case of an SSO system, illustrated in

Figure 4.

Identity

provider A

Compromised

service provider

Identity

provider B

DoS attack

DoS attack

SSO-SENSE

detection engine
Reporting

System health

Protocol discipline

Network health

Figure 4. Heuristic attack detection on the authentication vector

A compromised service provider launches a DoS attack against two identity providers, which are both

protected against attacks by their built-in client puzzle technology. The difference is that identity

provider B benefits of the presence of the SSO-SENSE engine, which allows it to take efficient

actions against the attacker with lesser impact on legitimate clients.

When using the classical client puzzle concept, the maximum puzzle difficulty kmax is calculated

according to the formula:

 kmax = log2(max(1, Q ∙ tS / tC)) + 1,

where:

 Q represents the current size of the request queue on the server;

 tS represents the average server time per puzzle solving operation;

 tC represents the average client time per puzzle solving operation.

If no additional information is present regarding an imminent attack, identity provider A will choose

the puzzle difficulty proportionally with the size of the request queue or according to a predefined

variation rule. This will result in the same server behavior regardless of the presence of an attack.

If additional information is present, like in the case of identity provider B, the current state of the

system can be used to decide on the variation rule of puzzle complexity k, as follows:

 In the normal state, the server does not reach its maximum load except for a few peak

moments. As a consequence, lower complexity puzzles can be chosen from the lower region

of the [0, kmax) interval.

 In the alerted state, the server load constantly rises above the usual threshold, without

necessarily indicating that an attack is in progress. However, as a precaution, medium

complexity puzzles will be selected within the [0, kmax] range.

 For the attacked state, in which an attack has been identified with a reasonable certainty, the

server will use kmax as difficulty level for all puzzles, even if it has not reached its maximum

load.

Experimental Results

We have implemented SSO-SENSE on the Microsoft .NET 3.5 framework, using the C# language. In

order to determine the behavior of the Bayesian inference module, the test scenario was composed of

two real-life situations:

 Repeated failed authentication attempts, purposely generated by an attacker to increase the

server load;

 Repeated breaks the normal flow of the protocol - by sending responses which do not comply

with the protocol specification - which cause the server to keep waiting for a proper response

until a timeout occurs.

During the simulation, the initial state of the SSO system was the normal state, with parameters Q =

400000, tS = 0.003 and tC = 0.5. As a result, kmax = 12.

0

2

4

6

8

10

12

1 2 3 4 5 6

P
u

zz
le

 c
o

m
p

le
xi

ty
 k

Number of events

Authentication failure Protocol follow-up failure

N
O

R
M

A
L

A
LE

R
T

 A

T
T

A
C

K

Figure 5. SSO-SENSE simulation results

Failed authentication attempts are low gravity events, therefore the transition from the normal to the

attack state is done by passing through several alert states. As shown in the first series of Figure 5,

after the first failed attempt the system maintains the normal state since such an event can be

commonly generated by legitimate users. However, the following events will increase the system

awareness by raising the threat level and forcing the system into a more defensive state, thereby

signaling the system administrator that the gravity of the situation has been growing.

Protocol errors are more serious as established through the conditional probabilities associated to the

hypotheses in the Bayesian inference engine. As a result, the system converges to the attacked state

faster, as illustrated in the second series of Figure 5.

THRESHOLD PUZZLES AND ADAPTIVE THRESHOLD PUZZLES

The Need for Threshold Puzzles

The behavior of an authentication system protected by the current client puzzle technology can

sometimes be suboptimal. There are two main reasons for this:

1. There is no upper limit to the puzzle complexity, which can result in clients spending too

much time solving high complexity puzzles;

2. There is no minimum response time which could prevent an attacker from finding the puzzle

solution too fast and overloading the server with a burst of requests.

Starting from these two limitations of client puzzles, we propose an improved solution which

overcomes them by applying thresholds to both the puzzle complexity and the client response time.

We will call the improved solution a threshold puzzle (Bocan, 2004).

Establishing an Upper Limit for the Puzzle Difficulty

The current client puzzle design specifies a difficulty range between 0 (no solving effort required) and

128 or 192 (theoretically impossible to solve, according to the employed hash function). Since this

difficulty increases exponentially the current implementations of this mechanism are limited to using

a narrow value range. High difficulty levels would result in DoS attacks targeted at legitimate clients,

since these clients may spend a significant amount of time solving the puzzle.

In order to obtain an optimal perception of puzzle difficulty at client level, the solving time spent by

the client must be lower than the time needed by the server to service a client request given the current

load, which translates into the following inequality:

 Tclient ≤ Tserver.

Considering M to be the average number of operations required to solve the puzzle and tC, the average

time per operation at the client level, we can define the solving time at the client level as

 Tclient = M ∙ tC

M can in turn be expressed in relation to the puzzle complexity k, since

 M = 2
k
 ∙ (2

k
 + 1) / 2

k+1
 ≈ 2

k-1

which leads to the approximation M ≈ 2
k-1

. As a result, we obtain the following equation:

 Tclient = 2
k-1

 ∙ tC.

The time in which the server is able to respond to a request is proportional to the current size of the

request waiting queue Q as well as to its average time per operation tS, therefore the time spent by the

server becomes

 Tserver = Q ∙ tS.

The initial inequality can now be written as

 2
k-1

 ∙ tC ≤ Q ∙ tS

which gives us the upper limit for the puzzle complexity k, since

 k ≤ log2(Q ∙ tS / tC) + 1.

In case of a low server load, the logarithm quantity Q ∙ tS / tC may be smaller than 1, which could

result in a negative value for k. In order to avoid this situation, we will consider the following

inequality which ensures that k has always a positive value

 k ≤ log2(max(1, Q ∙ tS / tC)) + 1.

Figure 6 shows the comparative evolution between the difficulty of client puzzles and threshold

puzzles for tS = 0.003 and tC = 0.5. It can be clearly seen that the client perception of performance

degradation as server load increases is less significant when threshold puzzles are used.

Figure 6. Comparative evolution of puzzle difficulty between client puzzles and threshold puzzles

Setting-up a Minimum Response Time Threshold

For a DoS attack to be successful, the attacker must be capable of sending numerous requests to the

server in a short time interval, despite the usage of client puzzles technology. To prevent the attacker

from finding the solution too fast, the sever can associate to the puzzle a minimum time threshold

necessary to find the solution, according to the puzzle difficulty. If the client response is received

faster than this threshold, the server can interpret this as an attack and limit or terminate its

communication with the client.

The basic idea consists of adding a timestamp TS to the puzzle in order to mark the precise moment

when the server has generated its random value NS. When the puzzle solution is received, the server is

able to calculate the exact time required by the client to find the solution. This time span should not be

lower than a server estimation based on the difficulty level k. If it is, then the server can consider that

it is under a strong DoS attack and should cease all communication with the client.

As shown in the previous paragraph, the average number of operations needed to solve a puzzle is 2
k-

1
, so the estimated time TE for finding the solution, which is the minimum response time threshold,

can be calculated with the following formula:

 TE = 2
k-1

 ∙ Toperation

where:

 k represents the puzzle difficulty;

 Toperation is the average time needed to perform a cryptographic operation.

The Threshold Puzzles Algorithm

Given the theoretical considerations presented in the previous sections, we can now outline the

complete threshold puzzles algorithm.

1. When a new communication channel is opened between the server and a client, the server

checks the system state, using its own metric (for example, the one provided by the SSO-

SENSE detection engine). If the server load does not exceed a critical threshold, the algorithm

stops since no defense mechanism is required.

2. The server generates a unique random value NS (also called a nonce), with a 64 bit entropy

and records the timestamp TS at which the value was generated.

3. The server sets the puzzle difficulty level k and estimates the minimum response time

threshold TE. The difficulty level k will be limited to an upper threshold so that an

uncontrolled increase in difficulty will not have repercussions on clients with limited

computational power.

4. The server creates a new puzzle, in the form of a tuple <NS, k, TS>, which is sent to the client.

5. When the puzzle is received, the client performs the following operations:

a. Checks the timestamp TS to ensure that the information is recent.

b. Generates a random number NC.

c. Searches for the puzzle solution X, by applying repeatedly a hash function h to the

arguments C, NS, NC and X, where C represents the client identity. Considering Y =

h(C, NS, NC, X) to be the output of the hash function, the puzzle is considered to be

solved when the first k bits of Y are equal to 0.

d. Sends back the solution to the server.

6. When the server receives the solution from the client, it executes the following steps:

a. Calculates the time needed for the client to solve the puzzle, Tsolve = TR – TS, where

TR represents the reception time. If Tsolve is smaller than TE, the client has a large

computational power at its disposal and the server may choose to either terminate or

to deliberately delay the communication with the client.

b. Checks if the client has previously submitted a solution with the same NS and NC

parameters. If so, the server ceases all communication with the client.

c. Checks that solution X is correct.

7. If all the above requirements have been satisfied, the server can allocate resources for

executing the authentication protocol with client C.

Adapting Threshold Puzzles to the Computational Power of the Client

Another aspect related to the threshold puzzle technology is the wide range of communication devices

that can be used to access a certain network service and interact with an authentication system.

Devices such as state-of-the-art desktop systems, laptops and notebooks, PDAs or smartphones can be

used to connect to the same network service, and their computational power can range from very fast

to medium or slow. In conjunction with the threshold puzzles technology, the user experience in

relation to the server response time could vary greatly in similar load conditions. As a consequence,

threshold puzzles need to be adapted to the computational power of each client in order to obtain a

seamless user experience. We will call this concept adaptive threshold puzzles (Bocan & Fagadar,

2005a).

The main idea behind this approach is to enable the server to determine the computational power of

the client and to adapt the puzzle difficulty accordingly. This assessment can take place during the

first dialog between client and server, when the server sends an exploratory puzzle to the client and,

based on the response time, identifies its computational power. The exploratory puzzle can either be a

partial hash function inversion (similar to the client puzzles concept) or a completely different

approach can be used depending on the implementation. A linear dependency between the difficulty

and the solving time of the exploratory puzzle is desired.

The computational power PC of the client can be calculated by the server based on the time it needed

to solve the exploratory puzzle. It is possible though, for a malicious client to intentionally delay the

response in order to hide the true value of PC and to appear weaker in front of the server. If such a

client launches an attack, it may lure the server into sending it lower complexity puzzles. Therefore, a

method must be found in order to encourage the client to use its whole computational power when

solving the exploratory puzzle. A solution to this problem is for the server to allocate a limited

number of connections within a certain time span, according to the reported PC value for a client. For

example, a powerful client will be allocated a number N of connections within a time slot, while a

slow client like a PDA or a smartphone will be allocated only N/2 or N/3 connections within the same

time slot. As a result, the malicious client will receive a smaller number of connections than expected,

and those connections that exceed this number will be ignored by the server. This way, clients who

deliberately hide their true computational power will not be able to launch an attack to the full extent

of their capabilities.

Once PC is evaluated by the server, the adapted complexity kC of the adaptive threshold puzzle can be

calculated using the formula

 kC = round(k ∙ log2(PC / Pref))

where:

 Pref is the reference computational power defined at server level,

 PC is the reported client computational power,

 k represents the reference puzzle difficulty, correlated with Pref.

The reference puzzle difficulty k uses the same formula as it the case of threshold puzzles

 k ≤ log2(max(1, Q ∙ tS / tC)) + 1

where:

 Q represents the current size of the request queue on the server,

 tS represents the average server time per cryptographic operation,

 tC represents the average client time per cryptographic operation.

The Adaptive Threshold Puzzles Algorithm

Based on the theoretical aspects described in the previous paragraph, we can now list the complete

adaptive threshold puzzles algorithm as an evolution of the threshold puzzles algorithm presented

before.

1. When a new communication channel is opened between the server and a client, the server

checks the system state. If the server load does not exceed a critical threshold, the algorithm

stops since no defense mechanism is required.

2. If it is the first time the client connects to the server, its computational power must be

estimated. The server creates an exploratory puzzle, which is the simple partial inversion of a

hash function, with a medium complexity (e.g. k = 6) and sends it to the client.

3. The client solves the exploratory puzzle and sends the solution back to the server.

4. The server checks the exploratory puzzle solution and estimates the computational power of

the client, PC. Depending on this quantity, the server will determine the maximum number of

requests allowed for this client within a time slot.

5. The server generates a unique random value NS (nonce), with a 64 bit entropy and records the

timestamp TS at which the value was generated.

6. The server calculates the adapted puzzle complexity kC and estimates the minimum response

time threshold TE.

7. The server creates a new puzzle, in the form of a tuple <NS, kC, TS>, which is sent to the

client.

8. The client receives the puzzle, calculates the solution X as shown in the threshold puzzles

algorithm and sends it back to the server.

9. The server checks the solution both in terms of correctness and in terms of solving time,

according to the rules mentioned in the threshold puzzles algorithm.

10. If solution is correct, the server will apply a restriction on the maximum number of requests

allowed for the client within a time unit, according to the PC value determined in step 2.

11. If all the above requirements have been satisfied, the server can allocate resources for

executing the authentication protocol with client C.

CASE STUDY: THE SSL HANDSHAKE PROTOCOL WITH ADAPTIVE EFFORT

DISTRIBUTION

Overview of the SSL Handshake Algorithm

Given its wide-spread and popularity, we have chosen Secure Socket Layer (SSL) protocol to test the

adaptive threshold puzzles technique. Before describing the changes made to the protocol in order to

support the puzzle technology, we will present a short overview of its original, unmodified version.

Figure 7 illustrates the SSL Handshake protocol, which will be the target of our improvements.

During this phase, the message exchange between peers contains information regarding the

cryptographic capabilities of the client as well as the configuration chosen by the server to enable the

communication with the client.

C
L
I
E

N
T

CLIENT_HELLO

Highest SSL Version
Ciphers Supported
Data Compression Methods
SessionId = 0
Random Data

SERVER_HELLO

Selected SSL Version
Selected Ciphers
Selected Data Compression Method
Assigned SessionId
Random Data

CERTIFICATE

Public Key
Authentication Signature

SERVER_DONE

S
E
R

V
E
R

Figure 7. The original SSL Handshake protocol

It can be easily seen that the CERTIFICATE message contains the digital signature of the server,

which represents the server engagement (and resource allocation) regardless of client identity and its

true intentions. If the client does not intend to continue its dialog with the server but instead aims to

overload it with useless requests that will end up being signed by the server, we are dealing with a

typical DoS attack.

From the perspective of service availability, allocating server resources unconditionally is a major

drawback. This is why we have focused on improving the mostly used authentication protocol, SSL,

by using the adaptive threshold puzzle technology. The changes we brought are extensions to the

original protocol, which provides it with the capability of balancing the authentication effort between

peers without affecting its cryptographic validity.

Adding Adaptive Effort Distribution to the SSL Handshake Protocol

In order to extend the SSL Handshake protocol with support for adaptive threshold puzzles, we need

to add additional messages to the information exchange between client and server.

First, the server must be able to assess the computational power of a new client, by introducing two

new messages to the protocol: PUZZLE_EXPLORE_CHALLENGE and

PUZZLE_EXPLORE_SOLUTION. Through the PUZZLE_EXPLORE_CHALLENGE message, the

server asks the client to solve an exploratory puzzle of medium difficulty. The client will submit the

puzzle solution via the PUZZLE_EXPLORE_SOLUTION message. If the server already knows the

client (prior requests have been received from the client in the past), it may choose to skip this phase

for a predetermined time frame or for an undetermined time frame, according to the application

specifics.

Second, the authentication effort must be distributed between peers, instead of being unilaterally

supported by the server. This is achieved by adding two new more message types:

PUZZLE_CHALLENGE and PUZZLE_SOLUTION which represent the information exchange

between the server and the client during the normal threshold puzzle solving process. During

authentication, the server must keep its load under a critical threshold. If this threshold is crossed, the

server must control the avalanche of authentication requests, and it achieves this goal by keeping the

client busy with a puzzle proportional in complexity with the server load.

C
L
I
E

N
T

CLIENT_HELLO

Highest SSL Version
Ciphers Supported
Data Compression Methods
SessionId = 0
Random Data

PUZZLE_EXPLORE_CHALLENGE

Time Stamp
Difficulty
Server Nonce

PUZZLE_EXPLORE_RESPONSE

Client ID
Server Nonce
Client Nonce
Solution

PUZZLE_CHALLENGE

Time Stamp
Difficulty
Server Nonce

PUZZLE_RESPONSE

Client ID
Server Nonce
Client Nonce
Solution

SERVER_HELLO

Selected SSL Version
Selected Ciphers
Selected Data Compression Method
Assigned SessionId

Random Data

CERTIFICATE

Public Key
Authentication Signature

SERVER_DONE

S
E
R

V
E
R

Figure 8. The SSL Handshake protocol with adaptive effort distribution

As shown in Figure 8, both the PUZZLE_EXPLORE_CHALLENGE and the

PUZZLE_CHALLENGE messages contain the server timestamp (TS), the puzzle difficulty (k and kC

respectively) and the server nonce (NS). The client responds with the

PUZZLE_EXPLORE_SOLUTION and PUZZLE_SOLUTION respectively, both containing its

identity (C), the server nonce, the client-generated nonce (NC) and the puzzle solution (X).

As it can be seen from the message exchange diagram, adding the new message types does not affect

the cryptographic integrity of the protocol. Instead, the client is delayed with a duration proportional

to the current server load and health state. Since the puzzle-related messages are exchanged before the

CERTIFICATE and SERVER_DONE messages, the server does not commit to resource allocation

until the client is validated. We call this adaptive effort distribution since the client delay and the

resource allocation at server level are related to the computational power of the client.

A Test Prototype for the Threshold Puzzles Technology

In order to simulate the behavior of the threshold puzzle technology in a real context and to outline its

benefits compared to the standard client puzzles, we have built the prototype illustrated in Figure 9.

CP - SSL
SSL

TP SSL

Legitimate

user

Attacker

Figure 9. Test prototype for the Threshold Puzzles technology

The prototype contains the following modules:

 Legitimate user: a normal client which attempts a SSL authentication according to the

protocol specification.

 Attacker: a client with access to large computational power, able to make a large number of

authentication requests within a short time frame.

 SSL server: a regular, unprotected SSL server.

 CP SSL server: a SSL server protected by standard Client Puzzles (CP) technology.

 TP SSL server: a SSL server protected by Threshold Puzzles (TP) technology.

Since in laboratory conditions it is hard to gather a really large computational power, in order to

simulate this aspect we have configured the Attacker module to submit a random, incorrect, solution,

while in the same time we have disabled the solution check at the server level. This way, the attacker

appears to be solving the solution in a much shorter timeframe than the legitimate clients, without

impacting in any other way the simulation results.

The simulation ran on two systems connected through a 100 Mbps local network with no disturbing

traffic. The first system, representing the server, hosted the SSL server, CP SSL server and TP SSL

server modules, while the second one hosted multiple instances of the Legitimate user and the

Attacker modules.

Experimental Results

On the test environment described previously we have run several scenarios designed to determine the

behavior of the Client Puzzles and Threshold Puzzles technologies, as follows:

 Clients authenticated by a regular SSL server – used as a reference when benchmarking

the system performance, this scenario allowed us to measure the average time needed to

completely execute the SSL protocol without any puzzle technology extensions. For a number

of 100 authentications of 15 clients, the average server response time was 4545 milliseconds.

 Clients and attacker authenticated by a regular SSL server – the simulation contained 14

normal clients and an attacker. The attacker sends a burst of CLIENT_HELLO messages in

order to trigger an equal number of responses signed by the server. The protocol execution is

never finished by the attacker, who deliberately ignores the server response. The attacker has

sent false requests with a rate of 30 requests / second, during which the server reached a

100% load. In this case, the average server response time for legitimate clients has increased

to 11320 milliseconds.

 Clients and attacker authenticated by the CP SSL server – this scenario is the same as the

previous one, with the exception that Client Puzzle technology has been activated at server

level. Since we have simulated the availability of a large computational power at the attacker

level and disabled the solution check at server level, for the same rate of 30 requests / second

the server reached the 100% load and the average authentication time has increased again to

12730 milliseconds. This increase can be explained by the overhead introduced by the two

additional protocol messages: PUZZLE_CHALLENGE and PUZZLE_RESPONSE.

 Clients and attacker authenticated by the TP SSL server – we have repeated the above

scenario, using Threshold Puzzles technology. In this case, the average authentication time of

legitimate clients has decreased significantly to 4553 milliseconds, almost the same as the one

obtained when the server was not subject to any attack. This was due to the fact that the

attacker solved the puzzles too fast, which lead to the server blocking its communication

channels with the attacker.

Conclusion

Figure 10 summarizes the test results of the SSL Handshake protocol simulations.

During a so-called strong attack, the Client Puzzles technology did not have the expected results since

the attacker was able to find the puzzle solution in a very short time frame and still send a large

number of requests to the server. The average response time was similar to that of an unprotected

server.

On the other hand, the server which employed Threshold Puzzles has systematically rejected the

requests which were accompanied by solutions found too fast for their complexity level, so that the

authentication time perceived by legitimate clients has not been altered.

0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 a
u

th
e

n
ti

ca
ti

o
n

 t
im

e
 [

m
s]

Regular SSL server

Regular SSL server under attack

CP SSL server under attack

TP SSL server under attack

Figure 10. Benchmark results for SSL Handshake protocol simulations

FUTURE RESEARCH DIRECTIONS

Classic puzzle designs have two important drawbacks that make them less ideal for the purpose of

thwarting Denial-of-Service attacks. The first and most serious drawback is parallelizability, i.e. the

possibility of computing the puzzle solution in parallel. In scenarios where a single adversary is in

control of a large number of compromised machines, the huge computation power thus gained can be

used to compute the solution much faster than the server expects. The second drawback of classic

puzzle designs is the lack of fine granularity, i.e. the server is not able to adjust the solution time

precisely.

Both non-parallelizability and fine granularity are important properties of good puzzles, but they are

difficult to obtain. Therefore, new constructions have emerged as a solution to this problem and one

such construction is the puzzle chain (Groza & Petrica, 2006; Ma, 2006). Instead of having one single

puzzle of varying difficulty, one may use a chain of interdependent puzzles of smaller difficulty. This

allows fine adjustments in time solving by altering the chain length with the added benefit that the

intermediate or the final solution cannot be computed in parallel.

Puzzle chains come with a unique set of drawback themselves. One important issue is keeping and

maintaining the chain state at the server level as well as transmitting it to the client. This requires

important storage and high-bandwidth communication channels, but clever and judicious scheduling

of resources alleviates this problem.

We intend to continue our research on increasing the availability of authentication protocols through

the use of puzzle chains and provide a framework for general implementations in order to leverage

our experimental findings. Though we are in the early stages of our research, we have already drawn

the outlines of the augmented Adaptive Threshold Puzzles concept:

 As the puzzle chain solving time is driven by two factors – individual link difficulty and the

chain length itself – we are in the position of integrating this into our earlier SSO-SENSE

detection engine. While the server would be able to establish the desired puzzle difficulty

based on the current system load – difficulty range which itself is rather narrow, the SSO-

SENSE module will issue to clients chains of varying lengths, based on the threat level sensed

by the system and on the computational power advertised by clients. This design allows a

very flexible and democratic model or resource allocation and keeps under a natural self-

control any client which misbehaves.

 The mapping process based on the computational power of the client corroborated with the

sensed system threat level allows for a fine and judicious allocation of resources, where no

resource livelock is possible. This means that clients are ordered by a democratic ranking

where no single client is able to obtain entire or the majority of server resources.

CONCLUSION

DoS attacks represent a permanent threat to the present communication systems in general and to

authentication systems in particular. In this chapter we have shown that authentication systems,

including Single Sign-On (SSO) systems, are vulnerable to DoS attacks due to the lack of control over

the resources allocated during the authentication process. This can result in severe performance

degradation or even failure in delivering the authentication service to legitimate clients.

To overcome the vulnerability of authentication systems facing the threat of DoS attacks, we have

brought several contributions meant to allow the early detection and prevention of such attacks. As a

first step, the SSO-SENSE heuristic threat assessment engine was introduced, to facilitate the

detection of DoS attacks at an early stage and to allow efficient deployment of countermeasures

against the attacker. In the second stage, we have developed the Threshold Puzzles and Adaptive

Threshold Puzzles technologies, to address the scenarios which were not covered by classical client

puzzles. In the last step, we have modified the widespread SSL Handshake protocol in order to

support the Adaptive Threshold Puzzles technology for an efficient protection against DoS attacks.

Based on the experimental results collected from a simulation platform, we can conclude that the

proposed changes lead to a considerable increase in DoS resilience for an authentication system and

that they prove to be a viable solution in securing authentication-based network services.

REFERENCES
Aura, T., Nikander, P., & Leiwo, J. (2000). DOS-resistant authentication with clientpuzzles. Lecture

Notes in Computer Science. Proceeding of the Cambridge Security Protocols Workshop 2000 (pp.

170-177). Cambridge, UK. doi: 10.1.1.106.9259

Bocan, V. (2004). Threshold Puzzles. The Evolution of DoS-Resistant Authentication. Periodica

Politehnica, Transaction on Automatic Control and Computer Science, 49(63). Timisoara, Romania.

Bocan, V., & Fagadar-Cosma, M. (2005, November). Adaptive Threshold Puzzles. Proceedings of

EUROCON 2005. The International Conference on "Computer as a tool" (pp. 644-647). Belgrade,

Serbia. doi: 10.1109/EURCON.2005.1630012

Bocan, V., & Fagadar-Cosma, M. (2005, November). Towards DoS-resistant Single Sign-On

Systems. Proceedings of EUROCON 2005. The International Conference on "Computer as a tool"

(pp. 668-671). Belgrade, Serbia. doi: 10.1109/EURCON.2005.1630018

Crosby, S. A., & Wallach, D. S. (2003, August). Denial of Service via Algorithmic Complexity

Attacks. Paper presented at the 12th USENIX Security Symposium, Washington, DC.

Dwork, C., & Naor, M. (1992). Pricing via Processing or Combating Junk Mail. Proceedings of

CRYPTO ’92 (pp. 139-147). Berlin, Germany: Springer-Verlag.

Groza, B., & Petrica, D. (2006, May). On Chained Cryptographic Puzzles. Proceedings of 3rd

Romanian-Hungarian Joint Symposium on Applied Computational Intelligence, SACI'06 (pp. 182-

191).Timisoara, Romania.

Harris, S. (2001, September). DoS Defense. Information Security Magazine.

Juels, A., & Brainard, J. (1999). Client Puzzles: A Cryptographic Countermeasure Against

Connection Depletion Attacks. Proceedings of the NDSS'99 (pp. 151-165).

Kim, Y., Lau, W. C., Chuah, M. C., & Chao, H. J. (2004). PacketScore: Statistics-based Overload

Control against Distributed Denial-of-Service Attacks. Proceedings of IEEE INFOCOM (pp. 2594-

2604). Hong Kong, SAR. doi: 10.1.1.137.6263

Liberty Alliance Project (2010). Liberty ID-FF Protocols and Schema Specification

1.2. Retrieved April 26, 2010, from

http://www.projectliberty.org/liberty/content/view/full/179/(offset)/15/

Liberty Alliance Project (2010). Liberty Specs Tutorial. Retrieved April 26, 2010, from

http://www.projectliberty.org/liberty/specifications__1/

Ma, M. (2006, April). Mitigating denial of service attacks with password puzzles. Proceedings of

International Conference on Information Technology: Coding and Computing, Vol. 2 (pp. 621-626).

Las Vegas, NV. doi: 10.1109/ITCC.2005.200

Merkle, R. C. (1978). Secure Communications Over Insecure Channels. Communications of the ACM,

21(4).

Rivest, R. R., Shamir, A., & Wagner, D. A. (1996). Time-lock Puzzles and Timed-release

Cryptography. Retrieved April 26, 2010, from

http://lcs.mit.edu/~rivest/RivestShamirWagnertimelock.pdf

Schneier, B. (2000, March). Distributed denial of service attacks. Crypto-gram Newsletter.

SETI @home Program (2010). Retrieved April 26, 2010, from http://setiathome.ssl.berkely.edu

Siaterlis, C., & Maglaris, B. (2004). Towards Multisensor DataFusion for DoS Detection.

Proceedings of the 2004 ACM symposium on Applied Computing (pp. 439-446). ACM Press. doi:

10.1.1.9.8572

Spatscheck, O. & Peterson, L. (1999). Defending against Denial of Service Attacks in Scout.

Proceedings of the 1999 USENIX/ACM Symposium on OSDI (pp. 59-72). doi: 10.1.1.37.157

The Distributed.net Organization (2010). Retrieved April 26, 2010, from http://www.distributed.net

Waters, B., Juels, A., Halderman, J. A., & Felten, E. W. (2004). New Client Puzzle Outsourcing

Techniques for DoS Resistance. Proceedings of 11th ACM Conference on Computer and

Communications Security. doi: 10.1.1.58.737

KEY TERMS & DEFINITIONS

http://www.projectliberty.org/liberty/content/view/full/179/(offset)/15/
http://www.projectliberty.org/liberty/specifications__1/
http://lcs.mit.edu/~rivest/RivestShamirWagnertimelock.pdf
http://setiathome.ssl.berkely.edu/
http://www.distributed.net/

Authentication system – a mechanism that establishes the identity of two parties either one way or

both ways. Authentication systems usually employ cryptography and involve a secret quantity known

by the parties.

Denial of Service – usually abbreviated as DoS, is an attack targeted against a computer system

which causes it to malfunction. The attacks “deny” access of the legitimate clients to the resources

and services of the computer system by overwhelming it with false requests that are usually

indistinguishable from legitimate ones.

Client Puzzle – a technology originally proposed as a way to increase the computational cost for the

client in order to limit the request rate for the server. The technology most commonly involves the

partial inversion of a cryptographic hash function.

Threshold Puzzle – a technology similar to the client puzzle which limits the puzzle difficulty level

in order to avoid overloading legitimate clients with low computational power.

Adaptive Threshold Puzzle – a technology similar to the threshold puzzle that takes into account the

computational power of the client. An adaptive threshold puzzle is able to discriminate its clients and

ask puzzle solutions of varying difficulties.

Bayesian Inference – is a method of statistical inference that calculates the probability of an event to

be true based on observations of evidences.

Adaptive Effort Distribution – a technique that adapts the threshold puzzle concept to the existing

Secure Sockets Layer (SSL) protocol. This essentially means the addition of four new messages to the

existing protocol design with the aim of gathering knowledge of the client computational power.

