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ABSTRACT 
Cryptographic authentication systems are currently the de facto standard for securing clients access to 

network services. Although they offer enhanced security for the parties involved in the 

communication process, they still have a vulnerable point represented by their susceptibility to denial 

of service (DoS) attacks. The present chapter addresses two important aspects related to the security 

of authentication systems and their resistance against strong DoS attacks, represented by attack 

detection and attack prevention. In this respect we present a detailed analysis of the methods used to 

evaluate the attack state of an authentication system as well as of the countermeasures that can be 

deployed to prevent or repel a DoS attack. 

 

INTRODUCTION 

Denial of service attacks on authentication systems can take two possible forms. On one hand, an 

attacker can prevent the network from sending the messages that it should normally transmit to its 

clients. On the other hand, it could force the network into sending messages it should not normally 

transmit. By far, the most popular DoS attack is server flooding that prevents legitimate clients from 

obtaining the services they request from that server. 

One cause for the vulnerability to DoS in authentication systems is that the dialog between peers takes 

place before even a minimum pre-authentication is performed, which renders the server incapable of 

distinguishing legitimate from malicious traffic. Enforcing the authentication of all requests would 

represent a DoS attack by itself, since the server would be busy checking all digital signatures, no 

matter if these are valid or not. Such a method would be as dangerous as a TCP stack overflow is in 

case of TCP SYN attacks. 

Another vulnerability is the lack of resource accounting. In this respect Spatscheck and Peterson 

(1999) consider that there are 3 key ingredients for protecting against DoS attacks: accounting all 

resources allocated to a client, detecting the moment when these resources rise above a predefined 

threshold and constraining the allocated resources by reducing them to a minimum level in case an 

attack has been detected and recovering the blocked resources. 

The third vulnerability resides in the intrinsic design of the communication protocols, as described by 

Crosby and Wallach (2003). A new class of low-bandwidth attacks exploits the deficiencies of data 

structures employed in various applications. For example, hash tables and binary trees can degenerate 

into simple linked lists when input data is selected accordingly. Using the typical bandwidth of a dial-

up modem, the authors have managed to bring a Bro server on the edge of collapsing: 6 minutes after 

the attack has begun, the server was ignoring 71% of traffic and was consuming its entire 

computational power. 

Taking in consideration the global market tendency towards on-line availability, DoS attacks prove to 

be more dangerous than initially predicted therefore identifying them as soon as they take place is a 

decisive aspect. From the moment the attack has begun until it is detected and countermeasures are 

deployed, the targeted servers are blocked and all legitimate requests are ignored, which can result in 

significant financial losses. Chained attacks can occur if the communication protocol continues its 

dialogue with the attacker even after anomalies have been detected. The basic idea behind the so 

called fail-safe or fail-stop protocols is for the message-exchange to be discontinued with any client 

that does not follow the normal course of the protocol. 

Considering the attack forms and characteristics described above, a resilient authentication system 

must fulfill two main requirements. First, the system must be able to detect an incoming attack as 



 

soon as possible in order to be able to respond accordingly and prevent any possible losses. Second, 

the system must be able to defend itself against an ongoing attack, either through its intrinsic 

characteristics or by deploying a set of countermeasures against the attacker. Given these 

requirements, we have structured this chapter into two main parts. In the first part we address the 

strategy and the techniques that enable an authentication system to efficiently detect DoS attacks, and 

their implementation into a detection engine called SSO-SENSE. In the second part we focus on the 

threshold puzzles concept as an a efficient way to protect against DoS attacks and analyze the case 

study of the SSL Handshake algorithm from both an implementation and a performance perspective.  

 

BACKGROUND 

 

The Client Puzzles Concept 

An efficient measure for preventing DoS attacks during the authentication phase would be to ensure 

that the client allocates its resources proportionally with the resources allocated by the server. As a 

result, at any time during the execution of the authentication protocol, the computational cost for the 

client will be higher than that of the server. This can be achieved by asking the client to solve a puzzle 

with a difficulty established by the server. The solution to the client puzzle should be easily accessible 

to the server, in order to obtain a low resource usage, while the client should be forced to allocate 

computational resources into solving the puzzle according to the complexity requested by the server. 

Merkle (1978) was the first to come up with the idea of using cryptographic puzzles, but he applied 

the concept only for key exchange and not for the authentication itself.  Later, the client puzzles 

concept has been successfully applied against TCP SYN attacks by Juels and Brainard (1999), who 

also outline the vulnerability of SSL protocols against DoS attacks and provide a rigorous 

demonstration of their security characteristics. Aura, Nikander and Leiwo (2000) have applied the 

puzzles to authentication protocols in general while Dwork and Naor (1992) have proposed measures 

for regulating unsolicited messages within a protocol.  

According to Aura, Nikander and Leiwo (2000) and to Harris (2001), the client puzzle must have a set 

of well-defined properties, as follows:  

 Creating a puzzle and verifying the solution must not require significant resources on the 

server side; 

 The cost of solving the puzzle should easily be changed from 0 to infinity; 

 The puzzle should be solvable on most hardware platforms; 

 Pre-calculating the solution to the puzzle must be impossible; 

 While the client solves the puzzle, the server must not store the solution or other client-

specific information; the same puzzle can be distributed to several clients, knowing that the 

solutions provided by one or more clients do not help in calculating a  new solution; 

 A client may reuse a puzzle by creating one or more of its instances.  

The client puzzle concept is shown in Figure 1. 

ServerClient

Puzzle

Solution

1 Create puzzle

(no significant effort)
2

Solve puzzle
(by allocating own resources)

3
Check solution
(decide resources to be 

allocated for servicing the client)

 

Figure 1. The client puzzle concept 

 



 

Client puzzles can take various forms, the most popular ones being  the partial inversion of a hash 

function (Juels & Brainard, 1999; Aura, Nikkander & Leiwo, 2000), the discrete logarithm inversion 

applied by Waters, Juels, Halderman and Felten (2004), the time-locked puzzles proposed by Rivest, 

Shamir and Wagner (1996) and linked puzzles (Groza & Petrica, 2006; Ma, 2006). 

 

Creating and Solving a Puzzle 

Periodically (usually once every several minutes) the server generates a random 64 bit value NS, 

enough to prevent the client from guessing the puzzle result. The server also attaches a value k to the 

puzzle, representing the puzzle complexity. In short, the puzzle which is sent by the server to its 

clients can be represented as a <Ns, k> pair. 

In order to solve the puzzle, the client generates a random value NC, with a double purpose: first, the 

client can generate a new puzzle by reusing the value NS provided by the server to create the NC value 

and second, it prevents an attacker from calculating the puzzle and sending it to the server before the 

legitimate client. A 24 bit size should be enough for this value, given the fact that it changes very 

often. 

The client has to apply repeatedly a hash function to a quantity Y, and the puzzle is considered solved 

when the 1st k bits of the quantity Y are equal to 0, according to the equation  

h(C, NS, NC, X) = Y,  

where:  

 h represents the hash function (e.g. MD5 or SHA), 

 NS is the random value generated by the server, 

 NC is the random value generated by the client, 

 C represents the client identity and 

 X is the solution to be sent to the server. 

The server also maintains a list of the recently used <NS, NC> pairs in order to prevent them from 

being reused.  

Since there is no known way of determining X other than by brute-force, the client will be forced to 

use its computational power to reach the solution. The value k controls the puzzle complexity and thus 

the time needed for the client to reach the solution. The edge cases are k=0 which means no effort at 

all and k=128 for MD5 or 192 for the SHA function means a puzzle nearly impossible to solve. 

 

Shortcomings of the Classical Puzzle Concept 

Client puzzles make a good choice for securing authentication protocols, as long as the attack is not 

distributed (Schneier, 2000). One shortcoming is the fact that the computational power available to 

the client is ignored, since the puzzle difficulty is established using a metric that takes in consideration 

only the server engagement. As a result, an attacker which has access to significant computational 

power can unleash a so-called strong attack against the server, and can solve puzzles faster than a 

legitimate client.  

During a strong attack, the server gradually increases the puzzle complexity up to levels which are 

very difficult for normal clients, which represents a DoS attack in itself. If the attacker has access to 

multiple computers and can solve the puzzle using parallel computing, it can reduce the solving time 

considerably. There are many real-life examples of such applications in literature, the SETI @home 

Program (2010) and the effort to break the RSA algorithm supported by the Distributed.net 

Organization (2010) being only two of them. 

These considerations emphasize the necessity of adopting a puzzle mechanism which enables the 

server to assess the computational power of its clients and adapt the puzzle complexity accordingly, 

also taking in consideration the overall security status of the system. This requirement is even more 

complex given the variety of computational devices that can connect to a network service and the fact 

that the service must respond within an acceptable timeframe to all its legitimate clients, while at the 

same time keeping any possible attackers at bay. 

 

DOS ATTACK DETECTION IN AUTHENTICATION SYSTEMS 

Measurable Characteristics 



 

The first step in being able to effectively protect against a DoS attack is to detect its presence. Thus, it 

is mandatory to determine if the server load is caused by a temporary and transitory aspect, by a peak 

in the network traffic, or by an attack. Deploying countermeasures induces a penalty experienced by 

clients as a drop in performance, and this situation can become unpleasant as it appears more 

frequently. 

Due to the complex nature of authentication systems and to the wide range of possible configurations 

into which they may be deployed, attack detection is an important challenge especially because of the 

lack of standard risk assessment metrics. In this section we propose three measurable characteristics 

that can be used as metrics in evaluating the system status and determining the threat level, and apply 

them as a case study to SSO systems based on the Liberty protocol suite (Liberty Alliance Project, 

2010a, 2010b). 

 

Protocol Discipline 

The first aspect in this category is the order of protocol execution. The exchange of messages between 

server and clients must follow a certain order and any disturbance in this order can indicate a possible 

attack on the system. Given the example of the Liberty protocol suite, a Single Logout request should 

not be received by a service or identity provider if the Single Sign-On and Federation request has been 

previously received (Bocan & Fagadar, 2005b), as shown in Figure 2. 
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Figure 2. Detecting a possible DoS attack against a SSO authentication system 

by monitoring the protocol execution order 

 

The request content is another characteristic to be considered. For each protocol, the request has a set 

of specific attributes which specify how the request should be processed by the receiving entity. A 

large variation of these attributes coming from a client may indicate a possible attack. For example, 

the AuthRequest message of the Single Sign-On and Federation protocol has an attribute which 

requests the identity provider to emit a temporary and anonymous identifier on behalf of the client, 

when data is exchanged among service providers. Too many requests of this kind received from the 

same client can indicate a DoS attack against the identity provider. 

 

Network Health 

Network health can be assessed by measuring traffic parameters on the server reception side and can 

be used to identify several aspects, such as: 

 network operation anomalies represented by an abrupt increase in the measured values over a 

given time span;  



 

 flash crowd anomalies due to the synergistic behavior of a group of users (e.g. when a new 

software product is available for download); this kind of anomaly can be detected in well-

known points in the network such as download locations or mirror servers;  

 abuse anomalies generated by ongoing DoS attacks or port scanning activities. 

   

A software sensor can be placed in the system in order to monitor the anomalies and provide the 

relevant information - in raw or aggregated form - to the attack detection engine. According to several 

studies (Siaterlis & Maglaris, 2004; Kim, Lau, Chuah & Chao, 2004), reception parameters such as 

the time between two consecutive requests, request size, number of requests per second received from 

the same client can be used successfully to detect an ongoing DoS attack, but they must be 

incorporated into a more complex system for evaluating the health status of the authentication system. 

 

System Health 

System health is a crucial aspect which directly impacts the quality of service (QoS). If the system is 

functioning at nominal levels it can provide the QoS established by design. Altering these levels, 

either due to software or to hardware conditions, will lead to an immediate change in the QoS which 

will have as consequences delays in providing the response to the clients, intermittent responses or 

even a lack of response from the server. 

System health can be characterized by several parameters, including processor load factor, available 

memory, frequency of I/O operations, resource reserve for virtual machines and the current state of 

system services, drivers or daemon processes. 

 

Obtaining and Correlating the Threat Assessment Metrics 

The information retrieved from the software sensors which measure the three main system 

characteristics presented above must be aggregated in order to reach a decision regarding the current 

threat level of the server.  

The sensors which monitor the protocol discipline must be implemented directly into the SSO 

protocol, so that they have unrestricted access to the message exchange between peers. The sensors 

responsible of monitoring the network and system health can use the performance indicators built into 

the operating systems, such as Simple Network Management Protocol (SNMP), Management 

Information Base (MIB) indicators or Windows Management Instrumentation (WMI) specific to 

Microsoft Windows operating systems.  

The threat level, at its simplest form, can be modeled as a real numerical value ranging between 0 and 

1. A value of 0 indicates with the highest degree of certitude that the system is working properly and 

no attack is in progress, while a value of 1 represents a clear indication that the system is being 

affected by an ongoing attack which could lead to service failure. Any value in between can be 

considered as a degree of certitude associated to the detection of an ongoing attack. 

As shown in one of our papers (Bocan & Fagadar, 2005b), Bayesian inference can be a good 

correlation mechanism for the information provided by the sensors, which generates as a direct output 

the probability that an attack has been identified, equal to the threat level.    

 

CASE STUDY: THE SSO-SENSE RISK ASSESSMENT MODULE 

System Overview 

The SSO-SENSE is a specialized software module which relies on Bayesian inference theory in order 

to monitor network traffic and detect DoS attacks in Single Sign-On (SSO) environments. SSO-

SENSE aims at providing better security for SSO systems, which are particularly vulnerable to DoS 

attacks since the protocols require every message to be signed. 
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Figure 3. Block diagram of the SSO-SENSE module 

 

As shown in Figure 3, SSO-SENSE gathers its input from a set of software sensors grouped across 

the three main categories mentioned earlier (protocol discipline, network health and system health) 

and applies Bayesian inference in order to estimate the threat level T of the system. Depending on this 

level, the system can be in one of the three states:  

 normal, in which the system works within nominal parameters without being influenced by an 

attack;  

 alerted, which indicates that the SSO system may be targeted by an attack and 

countermeasures like puzzle technology should be employed in order to reduce and control 

the rate of requests coming from the possible attacker;  

 attacked, indicating a clearly identified DoS attack is in progress in which the server should 

forcibly close its connection with the attacker in order to save its resources for other 

legitimate clients. 

In order to identify the current system state, SSO-SENSE compares the threat level with two 

thresholds, the alert threshold T1 and the attack threshold T2, with 0 < T1 < T2 < 1, chosen in such a 

way as to efficiently delimit two adjacent states. 

 

Evaluating the Threat Level using Bayesian Inference 

When applying the Bayesian inference algorithm, SSO-SENSE considers a set of three mutually 

exclusive hypotheses H1, H2 and H3, each associated with one of the system states. Initially, when 

system starts, a safe state is considered, for example P(H1) = 0.9 for the normal state, P(H2) = 0.09 for 

the alert state and P(H3) = 0.01 for the attack state, where P(Hi) represents the probability of 

hypothesis Hi being true. 

When an event E is signaled by a software sensor which detects a cross-threshold condition within the 

measurable characteristics of the authentication system, that event will be used as evidence to 

compute the normalization factor Λ, as follows: 

Λ = P(E | H1) ∙ P(H1) + P(E | H2) ∙ P(H2) + P(E | H3) ∙ P(H3) 

where, according to the Bayesian inference theory, P(E | Hi) represents the conditional probability of 

seeing the evidence E if hypothesis Hi is true. 

Next, SSO-SENSE evaluates the posterior probability of each hypothesis in the light of evidence E, 

according to Bayes’ theorem:  

P(Hi | E) = P(E | Hi) ∙ P(Hi) / Λ. 

In the end, the current threat level T is determined, according to the following formula:  

T = max[P(H1 | E), P(H2 | E), P(H3 | E)]. 

The event E which triggers the threat evaluation can be classified into one of the following categories: 

 A break into the authentication protocol, such as message inversion, message loss or 

messages with incomplete parameters; 

 Time between two successive requests coming from the same client; 

 An authentication error; 

 Sudden increase in CPU load for a short period of time; 



 

 Sudden increase in network traffic, except for flash crowd anomalies; 

 Port scanning activities. 

 

Applying Heuristic Attack Detection to the Authentication Process 

The various methods used to protect against DoS attacks in authentication systems can be enhanced in 

terms of behavior and efficiency by using the additional information provided by an attack detection 

engine. While a complex intrusion detection engine applied globally to the whole network may help 

in a general manner, attack detection on the authentication vector addresses a specific issue. In this 

case, the attacker does not aim to break into the system and steal valuable information but instead his 

goal is to compromise the authentication and to prevent legitimate clients from accessing a network 

service, an aspect which is not covered by the existing intrusion detection systems. 

The SSO-SENSE has been specifically designed for monitoring the authentication process, which 

represents the gate into the system. Let us consider the simple case of an SSO system, illustrated in 

Figure 4.  
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Figure 4. Heuristic attack detection on the authentication vector 

 

A compromised service provider launches a DoS attack against two identity providers, which are both 

protected against attacks by their built-in client puzzle technology. The difference is that identity 

provider B benefits of the presence of the SSO-SENSE engine, which allows it to take efficient 

actions against the attacker with lesser impact on legitimate clients.  

When using the classical client puzzle concept, the maximum puzzle difficulty kmax is calculated 

according to the formula: 

 kmax = log2(max(1, Q ∙ tS / tC)) + 1, 

where: 

 Q represents the current size of the request queue on the server; 

 tS represents the average server time per puzzle solving operation; 

 tC represents the average client time per puzzle solving operation. 

If no additional information is present regarding an imminent attack, identity provider A will choose 

the puzzle difficulty proportionally with the size of the request queue or according to a predefined 

variation rule. This will result in the same server behavior regardless of the presence of an attack. 

If additional information is present, like in the case of identity provider B, the current state of the 

system can be used to decide on the variation rule of puzzle complexity k, as follows: 

 In the normal state, the server does not reach its maximum load except for a few peak 

moments. As a consequence, lower complexity puzzles can be chosen from the lower region 

of the [0, kmax) interval. 



 

 In the alerted state, the server load constantly rises above the usual threshold, without 

necessarily indicating that an attack is in progress. However, as a precaution, medium 

complexity puzzles will be selected within the [0, kmax] range. 

 For the attacked state, in which an attack has been identified with a reasonable certainty, the 

server will use kmax as difficulty level for all puzzles, even if it has not reached its maximum 

load. 

 

Experimental Results 

We have implemented SSO-SENSE on the Microsoft .NET 3.5 framework, using the C# language. In 

order to determine the behavior of the Bayesian inference module, the test scenario was composed of 

two real-life situations: 

 Repeated failed authentication attempts, purposely generated by an attacker to increase the 

server load; 

 Repeated breaks the normal flow of the protocol - by sending responses which do not comply 

with the protocol specification - which cause the server to keep waiting for a proper response 

until a timeout occurs. 

During the simulation, the initial state of the SSO system was the normal state, with parameters Q = 

400000, tS = 0.003 and tC = 0.5. As a result, kmax = 12. 
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Figure 5. SSO-SENSE simulation results 

 

Failed authentication attempts are low gravity events, therefore the transition from the normal to the 

attack state is done by passing through several alert states. As shown in the first series of Figure 5, 

after the first failed attempt the system maintains the normal state since such an event can be 

commonly generated by legitimate users. However, the following events will increase the system 

awareness by raising the threat level and forcing the system into a more defensive state, thereby 

signaling the system administrator that the gravity of the situation has been growing. 

Protocol errors are more serious as established through the conditional probabilities associated to the 

hypotheses in the Bayesian inference engine. As a result, the system converges to the attacked state 

faster, as illustrated in the second series of Figure 5. 

 

THRESHOLD PUZZLES AND ADAPTIVE THRESHOLD PUZZLES 

 

The Need for Threshold Puzzles 

The behavior of an authentication system protected by the current client puzzle technology can 

sometimes be suboptimal. There are two main reasons for this: 



 

1. There is no upper limit to the puzzle complexity, which can result in clients spending too 

much time solving high complexity puzzles; 

2. There is no minimum response time which could prevent an attacker from finding the puzzle 

solution too fast and overloading the server with a burst of requests.  

Starting from these two limitations of client puzzles, we propose an improved solution which 

overcomes them by applying thresholds to both the puzzle complexity and the client response time. 

We will call the improved solution a threshold puzzle (Bocan, 2004). 

 

Establishing an Upper Limit for the Puzzle Difficulty 

The current client puzzle design specifies a difficulty range between 0 (no solving effort required) and 

128 or 192 (theoretically impossible to solve, according to the employed hash function). Since this 

difficulty increases exponentially the current implementations of this mechanism are limited to using 

a narrow value range. High difficulty levels would result in DoS attacks targeted at legitimate clients, 

since these clients may spend a significant amount of time solving the puzzle. 

In order to obtain an optimal perception of puzzle difficulty at client level, the solving time spent by 

the client must be lower than the time needed by the server to service a client request given the current 

load, which translates into the following inequality: 

 Tclient ≤ Tserver. 

Considering M to be the average number of operations required to solve the puzzle and tC, the average 

time per operation at the client level, we can define the solving time at the client level as 

 Tclient = M ∙ tC  

M can in turn be expressed in relation to the puzzle complexity k, since 

 M = 2
k
 ∙ (2

k
 + 1) / 2

k+1
 ≈ 2

k-1
 

which leads to the approximation M ≈ 2
k-1

. As a result, we obtain the following equation: 

 Tclient = 2
k-1

 ∙ tC. 

The time in which the server is able to respond to a request is proportional to the current size of the 

request waiting queue Q as well as to its average time per operation tS, therefore the time spent by the 

server becomes 

 Tserver = Q ∙ tS. 

The initial inequality can now be written as 

 2
k-1

 ∙ tC ≤ Q ∙ tS 

which gives us the upper limit for the puzzle complexity k, since 

 k ≤ log2(Q ∙ tS / tC) + 1. 

In case of a low server load, the logarithm quantity Q ∙ tS / tC may be smaller than 1, which could 

result in a negative value for k. In order to avoid this situation, we will consider the following 

inequality which ensures that k has always a positive value 

 k ≤ log2(max(1, Q ∙ tS / tC)) + 1. 

Figure 6 shows the comparative evolution between the difficulty of client puzzles and threshold 

puzzles for tS = 0.003 and tC = 0.5. It can be clearly seen that the client perception of performance 

degradation as server load increases is less significant when threshold puzzles are used. 

 
Figure 6. Comparative evolution of puzzle difficulty between client puzzles and threshold puzzles 

 



 

Setting-up a Minimum Response Time Threshold 

For a DoS attack to be successful, the attacker must be capable of sending numerous requests to the 

server in a short time interval, despite the usage of client puzzles technology. To prevent the attacker 

from finding the solution too fast, the sever can associate to the puzzle a minimum time threshold 

necessary to find the solution, according to the puzzle difficulty. If the client response is received 

faster than this threshold, the server can interpret this as an attack and limit or terminate its 

communication with the client. 

The basic idea consists of adding a timestamp TS to the puzzle in order to mark the precise moment 

when the server has generated its random value NS. When the puzzle solution is received, the server is 

able to calculate the exact time required by the client to find the solution. This time span should not be 

lower than a server estimation based on the difficulty level k. If it is, then the server can consider that 

it is under a strong DoS attack and should cease all communication with the client. 

As shown in the previous paragraph, the average number of operations needed to solve a puzzle is 2
k-

1
, so the estimated time TE for finding the solution, which is the minimum response time threshold, 

can be calculated with the following formula: 

 TE = 2
k-1

 ∙ Toperation  

where: 

 k represents the puzzle difficulty; 

 Toperation is the average time needed to perform a cryptographic operation. 

 

The Threshold Puzzles Algorithm 

Given the theoretical considerations presented in the previous sections, we can now outline the 

complete threshold puzzles algorithm. 

1. When a new communication channel is opened between the server and a client, the server 

checks the system state, using its own metric (for example, the one provided by the SSO-

SENSE detection engine). If the server load does not exceed a critical threshold, the algorithm 

stops since no defense mechanism is required. 

2. The server generates a unique random value NS (also called a nonce), with a 64 bit entropy 

and records the timestamp TS at which the value was generated. 

3. The server sets the puzzle difficulty level k and estimates the minimum response time 

threshold TE. The difficulty level k will be limited to an upper threshold so that an 

uncontrolled increase in difficulty will not have repercussions on clients with limited 

computational power. 

4. The server creates a new puzzle, in the form of a tuple <NS, k, TS>, which is sent to the client. 

5. When the puzzle is received, the client performs the following operations:  

a. Checks the timestamp TS to ensure that the information is recent. 

b. Generates a random number NC. 

c. Searches for the puzzle solution X, by applying repeatedly a hash function h to the 

arguments C, NS, NC and X, where C represents the client identity. Considering Y = 

h(C, NS, NC, X) to be the output of the hash function, the puzzle is considered to be 

solved when the first k bits of Y are equal to 0.  

d. Sends back the solution to the server. 

6. When the server receives the solution from the client, it executes the following steps: 

a. Calculates the time needed for the client to solve the puzzle, Tsolve = TR – TS, where 

TR represents the reception time. If Tsolve is smaller than TE, the client has a large 

computational power at its disposal and the server may choose to either terminate or 

to deliberately delay the communication with the client. 

b. Checks if the client has previously submitted a solution with the same NS and NC 

parameters. If so, the server ceases all communication with the client. 

c. Checks that solution X is correct. 

7. If all the above requirements have been satisfied, the server can allocate resources for 

executing the authentication protocol with client C. 

 

Adapting Threshold Puzzles to the Computational Power of the Client 



 

Another aspect related to the threshold puzzle technology is the wide range of communication devices 

that can be used to access a certain network service and interact with an authentication system. 

Devices such as state-of-the-art desktop systems, laptops and notebooks, PDAs or smartphones can be 

used to connect to the same network service, and their computational power can range from very fast 

to medium or slow. In conjunction with the threshold puzzles technology, the user experience in 

relation to the server response time could vary greatly in similar load conditions. As a consequence, 

threshold puzzles need to be adapted to the computational power of each client in order to obtain a 

seamless user experience. We will call this concept adaptive threshold puzzles (Bocan & Fagadar, 

2005a).  

The main idea behind this approach is to enable the server to determine the computational power of 

the client and to adapt the puzzle difficulty accordingly. This assessment can take place during the 

first dialog between client and server, when the server sends an exploratory puzzle to the client and, 

based on the response time, identifies its computational power. The exploratory puzzle can either be a 

partial hash function inversion (similar to the client puzzles concept) or a completely different 

approach can be used depending on the implementation. A linear dependency between the difficulty 

and the solving time of the exploratory puzzle is desired.  

The computational power PC of the client can be calculated by the server based on the time it needed 

to solve the exploratory puzzle. It is possible though, for a malicious client to intentionally delay the 

response in order to hide the true value of PC and to appear weaker in front of the server. If such a 

client launches an attack, it may lure the server into sending it lower complexity puzzles. Therefore, a 

method must be found in order to encourage the client to use its whole computational power when 

solving the exploratory puzzle. A solution to this problem is for the server to allocate a limited 

number of connections within a certain time span, according to the reported PC value for a client. For 

example, a powerful client will be allocated a number N of connections within a time slot, while a 

slow client like a PDA or a smartphone will be allocated only N/2 or N/3 connections within the same 

time slot. As a result, the malicious client will receive a smaller number of connections than expected, 

and those connections that exceed this number will be ignored by the server. This way, clients who 

deliberately hide their true computational power will not be able to launch an attack to the full extent 

of their capabilities. 

Once PC is evaluated by the server, the adapted complexity kC of the adaptive threshold puzzle can be 

calculated using the formula 

 kC = round( k ∙ log2(PC / Pref)) 

where: 

 Pref is the reference computational power defined at server level, 

 PC is the reported client computational power, 

 k represents the reference puzzle difficulty, correlated with Pref. 

The reference puzzle difficulty k uses the same formula as it the case of threshold puzzles 

 k ≤ log2(max(1, Q ∙ tS / tC)) + 1 

where: 

 Q represents the current size of the request queue on the server, 

 tS represents the average server time per cryptographic operation, 

 tC represents the average client time per cryptographic operation. 

 

The Adaptive Threshold Puzzles Algorithm 

Based on the theoretical aspects described in the previous paragraph, we can now list the complete 

adaptive threshold puzzles algorithm as an evolution of the threshold puzzles algorithm presented 

before. 

1. When a new communication channel is opened between the server and a client, the server 

checks the system state. If the server load does not exceed a critical threshold, the algorithm 

stops since no defense mechanism is required. 

2. If it is the first time the client connects to the server, its computational power must be 

estimated. The server creates an exploratory puzzle, which is the simple partial inversion of a 

hash function, with a medium complexity (e.g. k = 6) and sends it to the client. 

3. The client solves the exploratory puzzle and sends the solution back to the server. 



 

4. The server checks the exploratory puzzle solution and estimates the computational power of 

the client, PC. Depending on this quantity, the server will determine the maximum number of 

requests allowed for this client within a time slot. 

5. The server generates a unique random value NS (nonce), with a 64 bit entropy and records the 

timestamp TS at which the value was generated. 

6. The server calculates the adapted puzzle complexity kC and estimates the minimum response 

time threshold TE. 

7. The server creates a new puzzle, in the form of a tuple <NS, kC, TS>, which is sent to the 

client. 

8. The client receives the puzzle, calculates the solution X as shown in the threshold puzzles 

algorithm and sends it back to the server. 

9. The server checks the solution both in terms of correctness and in terms of solving time, 

according to the rules mentioned in the threshold puzzles algorithm.  

10. If solution is correct, the server will apply a restriction on the maximum number of requests 

allowed for the client within a time unit, according to the PC value determined in step 2. 

11. If all the above requirements have been satisfied, the server can allocate resources for 

executing the authentication protocol with client C. 

 

CASE STUDY: THE SSL HANDSHAKE PROTOCOL WITH ADAPTIVE EFFORT 

DISTRIBUTION 

 

Overview of the SSL Handshake Algorithm 

Given its wide-spread and popularity, we have chosen Secure Socket Layer (SSL) protocol to test the 

adaptive threshold puzzles technique. Before describing the changes made to the protocol in order to 

support the puzzle technology, we will present a short overview of its original, unmodified version. 

Figure 7 illustrates the SSL Handshake protocol, which will be the target of our improvements. 

During this phase, the message exchange between peers contains information regarding the 

cryptographic capabilities of the client as well as the configuration chosen by the server to enable the 

communication with the client. 
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Figure 7. The original SSL Handshake protocol 

It can be easily seen that the CERTIFICATE message contains the digital signature of the server, 

which represents the server engagement (and resource allocation) regardless of client identity and its 

true intentions. If the client does not intend to continue its dialog with the server but instead aims to 

overload it with useless requests that will end up being signed by the server, we are dealing with a 

typical DoS attack.  



 

From the perspective of service availability, allocating server resources unconditionally is a major 

drawback. This is why we have focused on improving the mostly used authentication protocol, SSL, 

by using the adaptive threshold puzzle technology. The changes we brought are extensions to the 

original protocol, which provides it with the capability of balancing the authentication effort between 

peers without affecting its cryptographic validity. 

 

Adding Adaptive Effort Distribution to the SSL Handshake Protocol 

In order to extend the SSL Handshake protocol with support for adaptive threshold puzzles, we need 

to add additional messages to the information exchange between client and server.  

First, the server must be able to assess the computational power of a new client, by introducing two 

new messages to the protocol: PUZZLE_EXPLORE_CHALLENGE and 

PUZZLE_EXPLORE_SOLUTION. Through the  PUZZLE_EXPLORE_CHALLENGE message, the 

server asks the client to solve an exploratory puzzle of medium difficulty. The client will submit the 

puzzle solution via the PUZZLE_EXPLORE_SOLUTION message. If the server already knows the 

client (prior requests have been received from the client in the past), it may choose to skip this phase 

for a predetermined time frame or for an undetermined time frame, according to the application 

specifics.  

Second, the authentication effort must be distributed between peers, instead of being unilaterally 

supported by the server. This is achieved by adding two new more message types: 

PUZZLE_CHALLENGE and PUZZLE_SOLUTION which represent the information exchange 

between the server and the client during the normal threshold puzzle solving process. During 

authentication, the server must keep its load under a critical threshold. If this threshold is crossed, the 

server must control the avalanche of authentication requests, and it achieves this goal by keeping the 

client busy with a puzzle proportional in complexity with the server load. 
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Figure 8. The SSL Handshake protocol with adaptive effort distribution 

 

As shown in Figure 8, both the  PUZZLE_EXPLORE_CHALLENGE and the 

PUZZLE_CHALLENGE messages contain the server timestamp (TS), the puzzle difficulty (k and kC 

respectively) and the server nonce (NS). The client responds with the 

PUZZLE_EXPLORE_SOLUTION and PUZZLE_SOLUTION respectively, both containing its 

identity (C), the server nonce, the client-generated nonce (NC) and the puzzle solution (X).  

As it can be seen from the message exchange diagram, adding the new message types does not affect 

the cryptographic integrity of the protocol. Instead, the client is delayed with a duration proportional 

to the current server load and health state. Since the puzzle-related messages are exchanged before the 

CERTIFICATE and SERVER_DONE messages, the server does not commit to resource allocation 

until the client is validated. We call this adaptive effort distribution since the client delay and the 

resource allocation at server level are related to the computational power of the client. 

 

A Test Prototype for the Threshold Puzzles Technology 



 

In order to simulate the behavior of the threshold puzzle technology in a real context and to outline its 

benefits compared to the standard client puzzles, we have built the prototype illustrated in Figure 9. 
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Figure 9. Test prototype for the Threshold Puzzles technology 

 

The prototype contains the following modules: 

 Legitimate user: a normal client which attempts a SSL authentication according to the 

protocol specification. 

 Attacker: a client with access to large computational power, able to make a large number of 

authentication requests within a short time frame. 

 SSL server: a regular, unprotected SSL server. 

 CP SSL server: a SSL server protected by standard Client Puzzles (CP) technology. 

 TP SSL server: a SSL server protected by Threshold Puzzles (TP) technology. 

Since in laboratory conditions it is hard to gather a really large computational power, in order to 

simulate this aspect we have configured the Attacker module to submit a random, incorrect, solution, 

while in the same time we have disabled the solution check at the server level. This way, the attacker 

appears to be solving the solution in a much shorter timeframe than the legitimate clients, without 

impacting in any other way the simulation results. 

The simulation ran on two systems connected through a 100 Mbps local network with no disturbing 

traffic. The first system, representing the server, hosted the SSL server, CP SSL server and TP SSL 

server modules, while the second one hosted multiple instances of the Legitimate user and the 

Attacker modules. 

 

Experimental Results 

On the test environment described previously we have run several scenarios designed to determine the 

behavior of the Client Puzzles and Threshold Puzzles technologies, as follows: 

 Clients authenticated by a regular SSL server – used as a reference when benchmarking 

the system performance, this scenario allowed us to measure the average time needed to 

completely execute the SSL protocol without any puzzle technology extensions. For a number 

of 100 authentications of 15 clients, the average server response time was 4545 milliseconds. 

 Clients and attacker authenticated by a regular SSL server – the simulation contained 14 

normal clients and an attacker. The attacker sends a burst of CLIENT_HELLO messages in 

order to trigger an equal number of responses signed by the server. The protocol execution is 

never finished by the attacker, who deliberately ignores the server response. The attacker has 

sent false requests with a rate of 30 requests / second, during which the server reached a 

100% load. In this case, the average server response time for legitimate clients has increased 

to 11320 milliseconds. 

 Clients and attacker authenticated by the CP SSL server – this scenario is the same as the 

previous one, with the exception that Client Puzzle technology has been activated at server 

level. Since we have simulated the availability of a large computational power at the attacker 

level and disabled the solution check at server level, for the same rate of 30 requests / second 



 

the server reached the 100% load and the average authentication time has increased again to 

12730 milliseconds. This increase can be explained by the overhead introduced by the two 

additional protocol messages: PUZZLE_CHALLENGE and PUZZLE_RESPONSE. 

 Clients and attacker authenticated by the TP SSL server – we have repeated the above 

scenario, using Threshold Puzzles technology. In this case, the average authentication time of 

legitimate clients has decreased significantly to 4553 milliseconds, almost the same as the one 

obtained when the server was not subject to any attack. This was due to the fact that the 

attacker solved the puzzles too fast, which lead to the server blocking its communication 

channels with the attacker. 

 

Conclusion 

Figure 10 summarizes the test results of the SSL Handshake protocol simulations. 

During a so-called strong attack, the Client Puzzles technology did not have the expected results since 

the attacker was able to find the puzzle solution in a very short time frame and still send a large 

number of requests to the server. The average response time was similar to that of an unprotected 

server.  

On the other hand, the server which employed Threshold Puzzles has systematically rejected the 

requests which were accompanied by solutions found too fast for their complexity level, so that the 

authentication time perceived by legitimate clients has not been altered.  
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Figure 10. Benchmark results for SSL Handshake protocol simulations 

 

FUTURE RESEARCH DIRECTIONS 

Classic puzzle designs have two important drawbacks that make them less ideal for the purpose of 

thwarting Denial-of-Service attacks. The first and most serious drawback is parallelizability, i.e. the 

possibility of computing the puzzle solution in parallel. In scenarios where a single adversary is in 

control of a large number of compromised machines, the huge computation power thus gained can be 

used to compute the solution much faster than the server expects. The second drawback of classic 

puzzle designs is the lack of fine granularity, i.e. the server is not able to adjust the solution time 

precisely. 

Both non-parallelizability and fine granularity are important properties of good puzzles, but they are 

difficult to obtain. Therefore, new constructions have emerged as a solution to this problem and one 

such construction is the puzzle chain (Groza & Petrica, 2006; Ma, 2006). Instead of having one single 

puzzle of varying difficulty, one may use a chain of interdependent puzzles of smaller difficulty. This 

allows fine adjustments in time solving by altering the chain length with the added benefit that the 

intermediate or the final solution cannot be computed in parallel. 

Puzzle chains come with a unique set of drawback themselves. One important issue is keeping and 

maintaining the chain state at the server level as well as transmitting it to the client. This requires 

important storage and high-bandwidth communication channels, but clever and judicious scheduling 

of resources alleviates this problem. 



 

We intend to continue our research on increasing the availability of authentication protocols through 

the use of puzzle chains and provide a framework for general implementations in order to leverage 

our experimental findings. Though we are in the early stages of our research, we have already drawn 

the outlines of the augmented Adaptive Threshold Puzzles concept: 

 As the puzzle chain solving time is driven by two factors – individual link difficulty and the 

chain length itself – we are in the position of integrating this into our earlier SSO-SENSE 

detection engine. While the server would be able to establish the desired puzzle difficulty 

based on the current system load – difficulty range which itself is rather narrow, the SSO-

SENSE module will issue to clients chains of varying lengths, based on the threat level sensed 

by the system and on the computational power advertised by clients. This design allows a 

very flexible and democratic model or resource allocation and keeps under a natural self-

control any client which misbehaves. 

 The mapping process based on the computational power of the client corroborated with the 

sensed system threat level allows for a fine and judicious allocation of resources, where no 

resource livelock is possible. This means that clients are ordered by a democratic ranking 

where no single client is able to obtain entire or the majority of server resources. 

 

CONCLUSION 

DoS attacks represent a permanent threat to the present communication systems in general and to 

authentication systems in particular. In this chapter we have shown that authentication systems, 

including Single Sign-On (SSO) systems, are vulnerable to DoS attacks due to the lack of control over 

the resources allocated during the authentication process. This can result in severe performance 

degradation or even failure in delivering the authentication service to legitimate clients. 

To overcome the vulnerability of authentication systems facing the threat of DoS attacks, we have 

brought several contributions meant to allow the early detection and prevention of such attacks. As a 

first step, the SSO-SENSE heuristic threat assessment engine was introduced, to facilitate the 

detection of DoS attacks at an early stage and to allow efficient deployment of countermeasures 

against the attacker. In the second stage, we have developed the Threshold Puzzles and Adaptive 

Threshold Puzzles technologies, to address the scenarios which were not covered by classical client 

puzzles. In the last step, we have modified the widespread SSL Handshake protocol in order to 

support the Adaptive Threshold Puzzles technology for an efficient protection against DoS attacks. 

Based on the experimental results collected from a simulation platform, we can conclude that the 

proposed changes lead to a considerable increase in DoS resilience for an authentication system and 

that they prove to be a viable solution in securing authentication-based network services. 
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Authentication system – a mechanism that establishes the identity of two parties either one way or 

both ways. Authentication systems usually employ cryptography and involve a secret quantity known 

by the parties. 

 

Denial of Service – usually abbreviated as DoS, is an attack targeted against a computer system 

which causes it to malfunction. The attacks “deny” access of the legitimate clients to the resources 

and services of the computer system by overwhelming it with false requests that are usually 

indistinguishable from legitimate ones. 

 

Client Puzzle – a technology originally proposed as a way to increase the computational cost for the 

client in order to limit the request rate for the server. The technology most commonly involves the 

partial inversion of a cryptographic hash function. 

 

Threshold Puzzle – a technology similar to the client puzzle which limits the puzzle difficulty level 

in order to avoid overloading legitimate clients with low computational power. 

 

Adaptive Threshold Puzzle – a technology similar to the threshold puzzle that takes into account the 

computational power of the client. An adaptive threshold puzzle is able to discriminate its clients and 

ask puzzle solutions of varying difficulties. 

 

Bayesian Inference – is a method of statistical inference that calculates the probability of an event to 

be true based on observations of evidences. 

 

Adaptive Effort Distribution – a technique that adapts the threshold puzzle concept to the existing 

Secure Sockets Layer (SSL) protocol. This essentially means the addition of four new messages to the 

existing protocol design with the aim of gathering knowledge of the client computational power. 

 


